Regression with L 1 regularization (lasso) method was compared to principal component regression (PCR) in Statistical Downscaling (SDS) modeling to predict monthly rainfall. SDS modeling uses ill-conditioned (high correlation/multicolliniear) covariates, which can be solved with selection or shrinkage methods. In this study, we used two GCMs with different characteristics as covariates (CMIP5 and GPCP version 2.2). The results shows that the lasso method gave better results (smaller RMSE and RMSEP) than PCR for GPCP version 2.2, and as good as PCR for CMIP5 covariates.
Graduate school of Bogor Agricultural University (SPs-IPB) stated that not all students of IPB master program successfully complete their studies. This becomes an evaluation for IPB to be more selective in choosing students in the future. This study aims to model the success classification of IPB master students in 2011 to 2015. The classification method used is rotation forest. The percentage of students who graduated is very large compared to those who did not pass, this can cause the evaluation value different. SMOTE (Synthetic Minority Oversampling Technique) is one of method to handle such unbalanced data by generating artificial data. The ROC (Receiver Operating Characteristic) curve is built to see the optimum cut off value. There are two classification models, they are rotation forest models before and after handled by SMOTE. The comparison results show that the rotation forest model after SMOTE with cut off value 0.6 is the best model. This model can increase the sensitivity value more than 50% although the accuracy and specificity value decreased compared to the modeling before SMOTE.
This research used CFSRv2 data as output data general circulation model. CFSRv2 involves some variables data with high correlation, so in this research is using principal component regression (PCR) and partial least square (PLS) to solve the multicollinearity occurring in CFSRv2 data. This research aims to determine the best model between PCR and PLS to estimate rainfall at Bandung geophysical station, Bogor climatology station, Citeko meteorological station, and Jatiwangi meteorological station by comparing RMSEP value and correlation value. Size used was 3×3, 4×4, 5×5, 6×6, 7×7, 8×8, 9×9, and 11×11 that was located between (-40) N - (-90) S and 1050 E -1100 E with a grid size of 0.5×0.5 The PLS model was the best model used in stastistical downscaling in this research than PCR model because of the PLS model obtained the lower RMSEP value and the higher correlation value. The best domain and RMSEP value for Bandung geophysical station, Bogor climatology station, Citeko meteorological station, and Jatiwangi meteorological station is 9 × 9 with 100.06, 6 × 6 with 194.3, 8 × 8 with 117.6, and 6 × 6 with 108.2, respectively.
GDP is very important to be monitored in real time because of its usefulness for policy making. We built and compared the ML models to forecast real-time Indonesia's GDP growth. We used 18 variables that consist a number of quarterly macroeconomic and financial market statistics. We have evaluated the performance of six popular ML algorithms, such as Random Forest, LASSO, Ridge, Elastic Net, Neural Networks, and Support Vector Machines, in doing real-time forecast on GDP growth from 2013:Q3 to 2019:Q4 period. We used the RMSE, MAD, and Pearson correlation coefficient as measurements of forecast accuracy. The results showed that the performance of all these models outperformed AR (1) benchmark. The individual model that showed the best performance is random forest. To gain more accurate forecast result, we run forecast combination using equal weighting and lasso regression. The best model was obtained from forecast combination using lasso regression with selected ML models, which are Random Forest, Ridge, Support Vector Machine, and Neural Network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.