BACKGROUND: Inflammation plays a major role in the initiation, destabilization and the progression of atherosclerosis. High Sensitivity C-Reactive Protein (hs-CRP) reflects active systemic inflammation and have shown to be a strong predictor of future cardiovascular events. AIM: The purpose of this study was to determine the role of High Sensitivity C-Reactive Protein (hs-CRP) independent for atherosclerosis severity prediction and to find out which factors largely is affecting hs-CRP level in dyslipidemia patient. METHODS: A total of 388 patients (267 dyslipidemia, 121 controls) were enrolled in this study. We investigated whether plasma hs-CRP is associated with atherosclerosis severity that was quantified by ankle-brachial index (ABI) and Doppler ultrasound. Related risk factor that influence hs-CRP levels in patients with dyslipidemia included determination of age, gender, diabetes, smoking, hypertension, total cholesterol, TG, LDL, HDL, and fasting glucose. RESULTS: Data showed a significant association between hs-CRP concentration level and the severity of atherosclerosis (p < 0.01). Univariate analysis showed that fasting plasma glucose, triglyceride, and BMI were significantly positively correlated with hs-CRP levels. Whereas, HDL cholesterol was negatively correlated with hs-CRP levels. Multivariate regression analysis using model 1 and 2, showed that in determining hs-CRP levels, triglyceride and BMI were taking a big role. CONCLUSION: Hs-CRP correlates with extent of atherosclerosis, and high triglyceride and BMI is closely associated with high hs-CRP levels in patients with dyslipidemia.
Ringkasan merupakan suatu cara yang efektif untuk meyajikan suatu karangan yang panjang dalam bentuk yang singkat. Walaupun bentuknya ringkas, namun ringkasan itu tetap memepertahankan pikiran pengarang dan pendekatannya yang asli. Namun dalam membuat ringkasan kita harus membaca berita atau artikel terlebih dahulu, sedangkan ringkasan dibuat dengan tujuan untuk meminimalkan waktu pembaca dan memberikan teks yang isinya langsung mengarah pada tujuan utama atau ide pokoknya. Pada penelitian ini memaparkan peringkasan teks otomatis berita online dari sebuah website menggunakan CLSA (Cross Latent Semantic Analysis) dan Cosine Similarity. Penelitian ini dilakukan untuk menguji seberapa baik hasil dan akurasi ringkasan yang dilakukan oleh CLSA dan cosine similarity. Penelitian ini menggunakan data sekunder dari berita dari media online yaitu web balipost.com dengan wilayah khusus Denpasar. Proses pengambilan data dilakukan dengan cara crawling. Data berita yang digunakan ialah sebanyak 161 berita, berita hasil ringkasan sistem nantinya akan dibandingkan dengan hasil ringkasan manual untuk mendapatkan akurasinya. Dari hasil pengujian yang dilakukan oleh sistem didapatkan nilai rata – rata akurasi F-Measure sebesar 58%, rata – rata Precision 62% dan rata – rata Recall 57%. Hasil dari penelitian peringkasan teks otomatis dari berita online dengan menggunakan metode CLSA dan cosine similarity memberikan hasil dan akurasi ringkasan yang cukup. Keywords : ringkasan, peringkas teks otomatis, crawling, CLSA, cosine similarity
Data theft using malware attacks in this digital era can attack smartphones and cloud servers, in 2018 there was the theft of photos belonging to Aryono Huboyo Djati. Theft can be prevented by applying cryptographic techniques. The purpose of this study was to determine the ability to combine Logistic Map and Henon Map in image encryption and decryption. These two theories were chosen because they are sensitive, with a small change in the input value will have a very significant impact on the output value. First step is changing the image into a matrix and randomizing using the Logistic Map algorithm and then continuing with the XOR process for each pixel bit using the Henon Map algorithm. in this study the encrypted image obtained an average MSE value exceeding 400 and the average PSNR value less than 10dB, this indicates that the cipher image is different from the plain image, and the decryption results show the average MSE value is 0 and the average PSNR value average is 100, this indicates that there is no difference between the description image and the original image
Rekrutmen merupakan proses mencari, menemukan dan menarik para pelamar yang kapabel untuk dipekerjakan dalam dan oleh suatu organisasi. Salah satu organisasi yang membutuhkan proses rekrutmen yaitu Badan Pusat Statistik (BPS). Saat ini, kebutuhan adanya petugas sensus sangat diperlukan oleh BPS untuk menunjang keberhasilan dalam mengelola data demi kualitas yang baik. Selain itu, sebagai organisasi yang juga mengikuti perkembangan teknologi komunikasi, BPS juga diharapkan menjawab kebutuhan akan perolehan informasi yang cepat dan mudah. Dengan pertimbangan tersebut, penelitian ini membangun sebuah sistem informasi manajemen dengan menggunakan metode extreme programming (XP). Perancangan alur yang digunakan berdasarkan dari observasi dan wawancara dengan staff BPS Kota Denpasar. Aplikasi Sistem Informasi Manajemen Mitra Statistik (SIM-MITRA) ini menggambarkan interaksi antara pengguna dan sistem dari aplikasi, yang setiap pengguna mengakses fitur yang berbeda sesuai yang hak akses yang diperolehnya. Software yang digunakan untuk membangun sistem aplikasi ini adalah diagram alur data, C#, dan MySQL sebagai databasenya. Aplikasi Sistem Informasi Manajemen (SIM) diharapkan dapat membantu memudahkan input data calon mitra sehingga staff BPS akan lebih efektif dan efisien dalam mengelola manajemen mitra statistik. Aplikasi SIM-MITRA dapat menampilkan form data mitra, form penilaian dan rekap hasil mitra yang diterima.
Handwriting identification is one out of the many research ever conducted. In its development, the handwriting can be written in real time by the user by using the mouse (online character recognition). Various studies on the traditional character handwriting recognition continue to be developed. One of them is the recognition of the Balinese characters. Balinese characters have their own unique characters compared with the other regions. The difference between the shapes of the characters with the other characters are quite similar, or there are some characters that can only be distinguished by a small sketch or doodle.This study uses Artificial Neural Network with Backpropagation algorithm to perform the Balinese characters recognition and zoning as a method of feature extraction. In a variation of the extraction method, the characteristics used are Image Centroid and Zone (ICZ), Zone Centroid and Zone (ZCZ) and normalization of features. Of the three methods, it will be determined the best method used in the Balinese characters recognition.From the test results of the extraction method, the combined characteristics of the ICZ, ZCZ and normalization of features were the most effective to be used for the recognition of the Balinese characters. The level of accuracy obtained from the results of the online testing was 71,28% and 72,31% for offline testing, with parameters of Backpropagation, which used the value of learning rate of 0,03, a momentum value of 0,5 and the number of neurons in the hidden layer of 130.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.