The accumulation of pollutants in water is dangerous for the environment and human lives. Some of them are considered as persistent organic pollutants (POPs) that cannot be eliminated from wastewater effluent. Thus, many researchers have devoted their efforts to improving the existing technology or providing an alternative strategy to solve this environmental problem. One of the attractive materials for this purpose are metal-organic frameworks (MOFs) due to their superior high surface area, high porosity, and the tunable features of their structures and function. This review provides an up-to-date and comprehensive description of MOFs and their crucial role as adsorbent, catalyst, and membrane in wastewater treatment. This study also highlighted several strategies to improve their capability to remove pollutants from water effluent.
The electric motor is one of the appliances that consume considerable energy. Therefore, the control method which can reduce energy consumption with better performance is needed. The purpose of this research is to minimize the energy consumption of the DC motor with maintaining the performance using Hybrid Fuzzy-PID. The input of the Fuzzy system is the error and power of the system. Where error is correlated with matric Q and power is correlated with matric R. Therefore, adjusting the fuzzy rule on error and power is like adjust matrices Q and R in LQR method. The proposed algorithm can reduce energy consumption. However, system response is slightly decrease shown from ISE (Integral Square Error). The energy reduction average is up to 5.58% while the average of ISE increment is up to 1.89%. The more speed variation in the system, the more energy can be saved by the proposed algorithm. While in terms of settling time, the proposed algorithm has the longest time due to higher computation time in the fuzzy system. This performance can be increased by tuning fuzzy rules. This algorithm offers a solution for a complex system which difficult to be modeled.
Brushless DC motors (BLDC) are one of the most widely used types of DC motors, both in the industrial and automotive fields. BLDC motor was chosen because it has many advantages over other types of electric motors. However, in its application in the market, most of the control systems used in BLDC motors still use conventional controls. This conventional method is easy and simple to apply but has many weaknesses, one example is that if the system state changes, then the parameters of the PID must also be changed so that static and dynamic performance will decrease, causing slow response and frequent oscillations. In this study, the design and simulation of a speed control system for BLDC motors using the Fuzzy-PID method were carried out. The research method is performed through simulation with Matlab / Simulink. The simulation is carried out by providing a speed setpoint input of 650 rpm and used 2 methods, namely Fuzzy-PID Logic and Pi conventional method which was carried out for 1 second. The test results show that the Fuzzy-PID control can provide better and more stable performance than the conventional PI control. The use of Fuzzy-PID control can reduce speed fluctuation and torque stability so that the BLDC motor can operate more efficiently and reliably.
The development of Outcome Based Education (OBE) Information System is done as a solution to academic problems related to the achievement of graduate learning for students. In addition, the OBE system is a form of effort to improve academic quality in order to be able to monitor and measure the development of student learning outcomes in a college study program. The Outcome Based Education system includes all grades processing based on Course Learning Outcomes which is related to Graduates Learning Outcomes so that the outcomes of each student can be measured. This information system is developed by the Rapid Application Development method, and uses the Yii2 Framework with the concept of MVC (Model, View, Controller) where system programming is separated based on application components, such as: manipulating data, controllers, and user interfaces. The use of the RAD method and the Yii2 Framework in making applications can be done quickly and in a structured manner making it easier for future developments. The developed system has been successfully tested and applied in the Electrical Engineering Study Program, Civil Engineering Study Program and Mechanical Engineering Study Program, and planned to be implemented in all study programs of the Faculty of Engineering, Sebelas Maret Universit<em>y.</em> This information system can be applied not only in the engineering faculty of Sebelas Maret University but also outside the university which requires an information system to measure the learning outcomes of graduates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.