In this research, co-pyrolysis of sugarcane bagasse and rubber seed oil using zeolite-Y as catalyst was carried out, with the main purpose to study the effect of raw material compositions on chemical composition of liquid fuel produced. For this purpose, the mixture of sugarcane bagasse and rubber seed oil with different mass ratios of bagasse to oil of 1 : 1; 1: 2; 1: 3: and 1: 4 was subjected to pyrolysis at 450 ° C in the presence of zeolite-Y as catalyst, and the liquid fuels were analyzed by GC-MS. The results show that liquid fuel contains hydrocarbons as main components, with several additional components include alcohols, esters, ketones, aldehydes, and acids. The liquid fuel produced from the raw material with the ratio of 1 : 3 was found to contain hydrocarbon with the highest relative percentage (87.91%), and consists of gasoline fraction (42.60%), kerosene fraction (43.59%), and residual fraction (1.72%).
In industry, kaolin is widely employed as an additive to paper, rubber and ceramics, among other uses, and can be synthesized into zeolite. Zeolites have been hydrothermally synthesized using alumina and silica based on deposits (kaolin) sampled from region in Bangka- Belitung. The synthesis of Zeolite A based on kaolin through several process stages such as drying, grinding and sieving prior to the hydrothermal process. It is then calcined into metakaolin, followed by the addition of NaOH solution, heating, filtration and washing to obtain the synthesis. This study examines how assessment models can be built and used for financial, technical, and marketing feasibility analysis of synthesized Zeolite A from kaolin. A new optimization method used to estimate financing requirements of investment products is presented, as well as a new method to predict the optimal year to sell the product. The conclusion is that Net Present Value with a positive value, Pay Back Period, Internal Rate of Return 30.78% higher than the interest rate set at 12%, and marketing aspects show that the process is feasible.
The comparative properties of pre-treated graphite waste and composite with magnetite nanoparticles were studied. The present work describes the thermal-mechanical method for pre-treated graphite electrode waste and chemical modification on the pre-treated graphite waste with magnetite nanoparticles (Fe3O4). The raw material is graphite electrode waste. The variables of temperature and time that affected the properties of pre-treated graphite waste was also observed. Pre-treated of graphite electrode waste was prepared via thermal process at temperatures of 60, 75, 90°C and various times of 30, 60 and 90 minutes, followed by mechanical crushing of the resultant graphite waste to 75 μm particle size. The synthetic material (graphite waste/Fe3O4 composite) was prepared with hydrochloric acid (0.1 M) for activation of the pre-treated graphite waste, followed by chemical modification with pre-treated graphite waste to Fe3O4 mass ratio 1: 1 (w/w). The experimental results showed that the pre-treated graphite waste are non-porous. Effect of magnetite nanoparticles (Fe3O4) revealed that the surface area of graphite waste/Fe3O4 composite increased from 8.44 m2/g to 64.58 m2/g. The EDX composition of Fe increased from 0.08 to 38.68 wt%, indicated that the modification of Fe3O4 nanoparticles onto graphite waste was carried out successfully. This data is useful for the preliminary treatment process of graphite electrode waste for further applications that require adsorbent preparation and modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.