Topical application of capsaicin and electrical stimulation induce reproducible forehead DBF increases and therefore are suitable to study trigeminal nerve-mediated vasodilation in humans.
Current antimigraine drugs are believed, besides their direct vasoconstrictive effect, to inhibit calcitonin gene-related peptide (CGRP) release from trigeminal nerve endings during migraine. Objective The objective of this report is to establish a biomarker for the CGRP-interfering effect of antimigraine drugs. Methods We quantified the effect of sumatriptan on the trigeminal nerve-mediated rise in forehead dermal blood flow (DBF), induced by capsaicin application (0.6 mg/ml) and electrical stimulation (0.2-1.0 mA), in a randomised, double-blind, placebo-controlled, crossover study in healthy male ( n = 11, age ± SD: 29 ± 8 years) and female ( n = 11, 32 ± 7 years) individuals. Results DBF responses to capsaicin were attenuated by sumatriptan (ΔDBF, mean ± SEM: 82 ± 18 AU, p = 0.0002), but not by placebo (ΔDBF: 21 ± 12 AU, p = 0.1026). Conclusion We demonstrated that sumatriptan inhibits increases in DBF, induced by the release of, most likely, CGRP. Thus, our model may be used as a biomarker to establish the trigeminovascular effects of (potential) antimigraine drugs, such as CGRP receptor antagonists or antibodies directed against CGRP or its receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.