This paper presents a pansharpening technique based on the non-subsampled contourlet transform (NSCT) and convolutional autoencoder (CAE). NSCT is exceptionally proficient at presenting orientation information and capturing the internal geometry of objects. First, it's used to decompose the multispectral (MS) and panchromatic (PAN) images into high-frequency and low-frequency components using the same number of decomposition levels. Second, a CAE network is trained to generate original low-frequency PAN images from their spatially degraded versions. Low-resolution multispectral images are then fed into the trained convolutional autoencoder network to generate estimated high-resolution multispectral images. Third, another CAE network is trained to generate original high-frequency PAN images from their spatially degraded versions. The result of low-pass CAE is fed to the trained highpass CAE to generate estimated high-resolution multispectral images. The final pan-sharpened image is accomplished by injecting the detailed map of the spectral bands into the corresponding estimated high-resolution multispectral bands. The proposed method is tested on QuickBird datasets and compared with some existing pan-sharpening techniques. Objective and subjective results demonstrate the efficiency of the proposed method.
and Shibasaki, Ryosuke (2022) IIoT based trustworthy demographic dynamics tracking with advanced Bayesian learning. IEEE Transactions on Network Science and Engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.