A turbidity telemetry system for COVID-19 pandemic situations using nRF24L01+transceiver and SEN0189 water turbidity sensor-based microcontroller has been successfuly developed.. The method used to characterize the sensor is by comparing sensor output voltages with the value of water turbidity. Turbid water used was created by adding distilled water with a concentration of sediment obtained from the filtered sediment with less than 60 μm in diameter. Data transmission performance for various transmit power was done by calculating the error percentages by comparing the number of messages sent by transmitter and received by receiver. The transmit power settings were 0, -6, -12, and 18 dBm and variations in the distance of data transmission from 10 to 80 m. The test results show that the water turbidity sensor has a good measurement range in measuring turbidity of water from 1.873 to 3500 NTU. Higher concentrations of sediment and turbidity of the water made the sensor output voltage decrease. There was a decrease in output voltage in the value, namely -0.0006 in turbidity sensor sensitivity. The results also show an increase in error percentages as the distance of data transmission increases, while the bigger the transmit power is used for data transmission, the smaller the percentage of errors occurs.
Turbidity has an indication that the liquid has been contaminated. In the testing process, turbidity in water can only be measured by sampling. To be able to maintain the quality of water, required a tool that can monitor and measure the level of turbidity of water in real time. water turbidity sensor SEN0189 is a sensor that works by measuring the amount of light from infrared led into the phototransistor that will produce the output voltage on the sensor. The study was conducted to be able to characterize the ability of sensors in detecting water turbidity. The method used is to test the sensors using sediment soil that has been filtered with a diameter of <60μm to be added into the pond containing 1 liter of water. The results show that the greater the concentration of sediment dissolved in the water pool the sensor output voltage will be smaller. The sensor has a sensitivity of -0.0008 and the output voltage when the sensor detects 0 NTU is 3.9994 volts with 5V operating voltage and the sensor can detect water turbidity linearly within the test range 1.873 NTU to 1011.93 NTU.
ABSTRAKSTiga perempat wilayah Negara Kesatuan Republik Indonesia (NKRI) merupakan wilayah perairan.NKRI adalah negara kepulauan dengan jumlah pulau terbanyak di dunia yaitu 17.504 pulau serta mempunyai panjang garis pantai terpanjang kedua di dunia setelah Kanada. Kebiasaan nelayan Indonesia memasuki wilayah perairan negara lain membuat nelayan Indonesia ditangkap oleh penegak hukum negara lain. Kebiasaan nelayan Indonesia memasuki wilayah perikanan Australia kerap menimbulkan pasang surut hubungan kedua negara. Oleh karena itu, dalam penelitian ini dibuat prototipe perangkat yang dapat memberikan informasi kepada nelayan ketika berlayar bahwa posisi kapal melanggar batas perairan negara lain atau tidak. Sebagian besar kapal-kapal nelayan tradisional tersebut tidak dilengkapi dengan alat navigasi yang memadai. Sehingga perlu perangkat yang dapat memberikan informasi dini kepada jika telah mendekati batas zona perairan negara lain. Prototipe dibuat dengan menggunakan Arduino Mega 2560 / Arduino Uno dan GPS Neo-6M. Modul GPS Neo 6M digunakan sebagai penentuan lokasi posisi kapal kapal, posisi kapal latitude (x) dan longitude (y). Kemudian titik-titik pada garis perbatasan garis, data latitude (x i ) dan longitude (y i ) diinputkan terlebih dahulu dalam mikrokontroller. Mikrokontroller menghitung jarak posisi kapal dengan titik-titik pada garis perbatasan. Dari pengujian dan pengambilan data yang telah dilakukan, diketahui bahwa rata-rata error dengan Arduino Mega adalah 3,19 % dan dengan menggunakan Arduino Uno nilai error (rata-rata) adalah 5,32 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.