The sodium alginate-g-poly(acrylic acid-co-acrylamide)/rice husk ash (NaAlg-g-P(AA-co-AAm)/RHA) superabsorbent nanocomposite was synthesized by the free-radical graft copolymerization of alginate (NaAlg), acrylic acid (AA), acrylamide (AAm), and RHA in aqueous solution. FTIR spectra revealed that the monomers were grafted onto NaAlg chains, and the nanocomposite was formed successfully. Incorporation of RHA into hydrogel matrix formed porous interlinked channels within hydrogel network. Superabsorbent nanocomposite showed greater equilibrium swelling capacity (1070g/g) compared with neat hydrogel (830g/g). Moreover, water transport mechanism of all hydrogels was non-Fickian diffusion type. Rheological measurements confirmed effective role of RHA in improving gel strength of superabsorbent nanocomposite. The influence of various factors, such as different loads (0.3, 0.6, 0.9 psi), solution pH, saline solution, and temperature on the swelling behavior of hydrogels was also assessed. Superabsorbent nanocomposite exhibited good pH-dependent swelling reversibility and high water retention capability, making it more efficient water-saving material for agricultural and horticultural applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.