Disulfide oil (DSO) mostly burned or stored is known as a low-grade byproduct in gas refining industries. This material is highly perilous to environment. A common way to reduce the environmental impact of DSO is blending in a specific ratio with gas condensate stream in gas refinery. This would improve DSO quality and consequently strengthen its unique application. In this work, density, viscosity and surface tension of DSO and gas condensate mixtures were measured and modeled. Viscosity and density of DSO, gas condensate, and their mixtures were measured in temperature range of 283.15-318.15 K. In addition, surface tension was measured at 298.15 K at different volumetric fractions of DSO-gas condensate mixture. Excess molar volume (V E ), viscosity deviation (Dl), deviation of excess Gibbs free energy (DG E ), and excess surface tension (r E ) were determined based on measured properties. Results showed a positive and negative trend for excess molar volume and excess surface tension, respectively. While fluctuation was observed in viscosity deviation and deviation of excess Gibbs free energy and results showed positive and negative values in different mole fraction. In addition, RedlichKister equation is proposed to predict excess properties of DSO and gas condensate mixtures.Keywords DSO Á Gas condensate Á Excess property Á Viscosity Á Gibbs free energy Á Surface tension
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.