The security of patient information is important during the transfer of medical data. A hybrid spatial domain watermarking algorithm that includes encryption, integrity protection, and steganography is proposed to strengthen the information originality based on the authentication. The proposed algorithm checks whether the patient’s information has been deliberately changed or not. The created code is distributed at every pixel of the medical image and not only in the regions of non-interest pixels, while the image details are still preserved. To enhance the security of the watermarking code, SHA-1 is used to get the initial key for the Symmetric Encryption Algorithm. The target of this approach is to preserve the content of the image and the watermark simultaneously, this is achieved by synthesizing an encrypted watermark from one of the components of the original image and not by embedding a watermark in the image. To evaluate the proposed code the Least Significant Bit (LSB), Bit2SB, and Bit3SB were used. The evaluation of the proposed code showed that the LSB is of better quality but overall the Bit2SB is better in its ability against the active attacks up to a size of 2*2 pixels, and it preserves the high image quality.
<p>Integrated healthcare systems require the transmission of medical images between medical centres. The presence of watermarks in such images has become important for patient privacy protection. However, some important issues should be considered while watermarking an image. Among these issues, the watermark should be robust against attacks and does not affect the quality of the image. In this paper, a watermarking approach employing a robust dynamic secret code is proposed. This approach is to process every pixel of the digital image and not only the pixels of the regions of non-interest at the same time it preserves the image details. The performance of the proposed approach is evaluated using several performance measures such as the Mean Square Error (MSE), the Mean Absolute Error (MAE), the Peak Signal to Noise Ratio (PSNR), the Universal Image Quality Index (UIQI) and the Structural Similarity Index (SSIM). The proposed approach has been tested and shown robustness in detecting the intentional attacks that change image, specifically the most important diagnostic information.</p>
With the increasing widely spread digital media become using in most fields such as medical care, Oceanography, Exploration processing, security purpose, military fields and astronomy, evidence in criminals and more vital fields and then digital Images become have different appreciation values according to what is important of carried information by digital images?. Due to the easy manipulation property of digital images (by proper computer software) makes us doubtful when are juries using digital images as forensic evidence in courts, especially, if the digital images are main evidence to demonstrate the relationship between suspects and the criminals. Obviously, here demonstrate importance of data Originality Protection methods to detect unauthorized process like modification or duplication and then enhancement protection of evidence to guarantee rights of incriminatory. In this paper, we shall introduce a novel digital forensic security framework for digital image authentication and originality identification techniques and related methodologies, algorithms and protocols that are applied on camera captured images. The approach depends on implanting secret code into RGB images that should indicate any unauthorized modification on the image under investigation. The secret code generation depends mainly on two main parameter types, namely the image characteristics and capturing device identifier. In this paper, the architecture framework will be analyzed, explained and discussed together with the associated protocols, algorithms and methodologies. Also, the secret code deduction and insertion techniques will be analyzed and discussed, in addition to the image benchmarking and quality testing techniques.
Digital Photo images are everywhere around us in journals, on walls, and over the Internet. However we have to be conscious that seeing does not always imply reality. Photo images become a rich subject of manipulations due to the advanced digital cameras as well as photo editing software. Accordingly, image forgery is becoming much easier using the existing tools in terms of time and accuracy, and thus the forensics of detecting an image forgery case is becoming difficult and needs more and more time and techniques to prove the image originality especially as crime evidences and court related cases. In this paper, a framework with associated algorithms and methodologies is proposed to ensure the authenticity of the image and the integrity of the content in addition to protecting the photo image against forgery suspects. The framework depends on developing new generation of certified digital cameras that could produce authenticated and forgery-proof photos. The proposed methodology generates an irreversible hash integrity code from the image content based on color matrix calculations and steganography algorithms. The simulation results proved the capability of the proposed technique to detect image forgery cases in more than 16 scenarios of manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.