The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits—without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Okra (Abelmoschus esculentus L.) is susceptible to number of diseases like Yellow Vein Mosaic Virus disease, Damping Off, Fusarium wilt, Powdery Mildew and Enation Leaf Curl. The Okra is favorite host of whitefly which transmits the okra Yellow Vein Mosaic Virus (OYVMV). OYVMV disease causes considerable yield losses in Okra. Experiment was conducted to check the efficacy of organic matter (poultry manure, leaves) and insecticides (Acetamiprid, Diafenthiuron, Pyridine Carboxamide) against OYVMV and its whitefly vector. In this experiment, ten okra varieties were sown in randomized complete block design (RCBD). Organic matter and insecticides were applied at recommended doses (@5ml/L) on weekly intervals. Among insecticides, Acetamiprid showed the best result to manage whitefly infestation with 60.01% mortality and OYVMV disease severity with 53.98% efficiency. Polo (Diafenthiuron) also showed good results to manage whitefly (56.36%) and OYVMVD (46.34%), but Ulala (Pyridine Carboxamide) insecticide was least effective to control whitefly population (47.27%) and to manage the infection of OYVMV disease (43.91%). Leaf manure was more effective with 61.16% efficiency as compared to poultry manure (56.01%) against OYVMV disease severity. New chemistry insecticide (acetamiprid) gave the most effective control of whitefly and transmission of OYVMV and could be used in place of conventional insecticides. Leaf manure proved significant defense activator in okra plants with effective control of disease and could be used as eco-friendly management approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.