Activated stellate cells can induce breast cancer emergence from dormancy in the liver by secreting inflammatory cytokines. Preventing liver inflammation or disrupting the subsequent key cytokines may prevent metastatic outgrowth.
Zika virus (ZIKV) belongs to the Flavivirus genus of the Flaviviridae family. It is an arbovirus that can cause congenital abnormalities and is sexually transmissible. A series of outbreaks accompanied by unexpected severe clinical complications have captured medical attention to further characterize the clinical features of congenital ZIKV syndrome and its underlying pathophysiological mechanisms. Endoplasmic reticulum (ER) and ER-related proteins are essential in ZIKV genome replication. This review highlights the subcellular localization of ZIKV to the ER and ZIKV modulation on the architecture of the ER. This review also discusses ZIKV interaction with ER proteins such as signal peptidase complex subunit 1 (SPCS1), ER membrane complex (EMC) subunits, and ER translocon for viral replication. Furthermore, the review covers several important resulting effects of ZIKV infection to the ER and cellular processes including ER stress, reticulophagy, and paraptosis-like death. Pharmacological targeting of ZIKVaffected ER-resident proteins and ER-associated components demonstrate promising signs of combating ZIKV infection and rescuing host organisms from severe neurologic sequelae.
Metastasis accounts for most cancer-related deaths. The majority of solid cancers, including those of the breast, colorectum, prostate and skin, metastasize at significant levels to the liver due to its hemodynamic as well as tumor permissive microenvironmental properties. As this occurs prior to detection and treatment of the primary tumor, we need to target liver metastases to improve patients’ outcomes. Animal models, while proven to be useful in mechanistic studies, do not represent the human population heterogeneity, drug metabolism or cell-cell interactions, and this gap between animals and humans results in costly and inefficient drug discovery. This underscores the need to accurately model the human liver for disease studies and drug development. Further, the occurrence of liver metastases is influenced by the primary tumor type, sex and race; thus, modeling these specific settings will facilitate the development of personalized/targeted medicine for each specific group. We have adapted such all-human 3D ex vivo hepatic microphysiological system (MPS) (a.k.a. liver-on-a-chip) to investigate human micrometastases. This review focuses on the sources of liver resident cells, especially the iPS cell-derived hepatocytes, and examines some of the advantages and disadvantages of these sources. In addition, this review also examines other potential challenges and limitations in modeling human liver.
Dengue virus (DENV) and Zika virus (ZIKV) are flaviviruses transmitted to humans by their common vector, Aedes mosquitoes. DENV infection represents one of the most widely spread mosquito-borne diseases whereas ZIKV infection occasionally re-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.