This paper proposes a novel high-gain AC-DC converter based on the Cockcroft-Walton (CW) voltage multiplier which can be utilized in motor drive systems with low input voltage. In this topology, use of the voltage multiplier and boost circuit results in the increment of converter gain which has a significant impact on the cost and efficiency of the system. Moreover, in this converter, the AC voltage is directly changed to DC voltage using the switching method in high frequency and, as well, the power factor is corrected. Besides, this high-frequency converter contributes to the reduction of output ripple. On the other hand, cost efficiency, the low voltage stress on capacitors and diodes, compactness, and the high voltage ratio, are achieved from the Cockcroft-Walton circuit. Furthermore, the hysteresis method is presented for converter switching to correct the power factor. The converter is simulated in MATLAB software to demonstrate the effectiveness of the suggested method. Lastly, a laboratory prototype of the suggested converter is built, several tests are done in order to verify the theoretical analysis, and comprehensive comparison with the state-of-the-art converter is done.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.