In this study, carbon dots synthesized from bamboo leaf cellulose were used simultaneously as a staining agent and for doxorubicin delivery to target cancer cells.
The development of dye sensitizer is growing in line with the increasing demand for renewable energy. A research to obtain a dye sensitizer that is economical, safe, and produces a great value of DSSC efficiency is a challenge unresolved. On the other hand, the efforts for waste reduction are also intensively conducted to create better environment. In this paper, the variation of synthetic dye wastes from batik industries have been successfully applied as dye sensitizer and fabricated on DSSC cells. Congo red (1.0133%) yielded higher efficiency than rhodamine B (0.0126%), methyl orange (0.7560%), and naphthol blue black (0.0083%). The divergence of the efficiency of DSSC is very dependent upon the chromophore group owned by dye. This study has proven that the more chromophore group possessed by dye, the higher the efficiency of DSSC generated. This research concludes that the dye wastes have a bright future to be implemented as dye sensitizer on solar cells.
AbstractThe demands of ecofriendly technologies to produce a reliable supply of renewable energy on a large scale remains a challenge. A solar cell based on DSSC (Dye-Sensitized Solar Cell) technology is environmentally friendly and holds the promise of a high efficiency in converting sunlight into electricity. This manuscript describes the development of a light harvester system as a main part of a DSSC. Congo red dye has been functionalized with metals (Fe, Co, Ni), forming a series of complexes that serve as a novel light harvester on the solar cell. Metal-congo red complexes have been characterized by UV-VIS and FTIR spectroscopy, and elemental analyses. The performance of metal complexes in capturing photons from sunlight has been investigated in a solar cell device. The incorporation of metals to congo red successfully improved of the congo red efficiency as follows: Fe(II)-congo red, Co(II)-congo red and Ni(II)-congo red had efficiencies of 8.17%, 6.13% and 2.65%, respectively. This research also discusses the effect of metal ions on the ability of congo red to capture energy from sunlight.
Zinc oxide (ZnO) is a semiconductor material that widely used in various applications due to its unique properties. Synthesis of ZnO by solvothermal method has been conducted with controlled pH values. The variations of pH value were 10, 11 and 12 by adjusting NaOH content. Crystall structure of the synthesis products after heat treatment at 110oC and 600oC has characterised by X-ray Diffratometer (XRD). Crystallite size of ZnO was measured by Scherrer equation. Crystall phase of ZnO has been observed on all pH value variations at 110 oC with 22,98-37,06 nm of crystallite size, whereas ZnO has been observed on all pH value variations at 600 oC with 41,39-71,77 nm of crystallite size.Keywords: ZnO, pH values, crystallite size, solvothermal
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.