Wound infection with antibiotic-resistant bacteria can extend a patients’ debility and increase the expense of treatment in the long term; therefore, careful management of patients with wound infections is necessary to avoid complications. The usage of antimicrobial agent is a major factor in resistance development. This study aims to understand the causes of wound infections, as well as the criteria for diagnosing them for more sensible antibiotic prescribing. Samples from 269 wound patients were collected, and cultured for bacterial growth. Gram stain technique, bacterial identification via VITEK 2 compact system were investigated in this study. Gram negative bacteria accounted for 59.15% of the total isolates, while pathogenic gram positive bacteria accounted for 40.85% of total isolates. Escherichia coli and Pseudomonas aeruginosa are the dominant pathogenic gram negative bacteria in wounds, while Staphylococcus aureus, and Staphylococcus epidermidis are the dominant pathogenic gram positive bacteria. Pseudomonas aeruginosa showed 100% resistance to the majority of antibiotic tested, including Ampicillin, Amoxicillin/Clavulanic Acid, Aztreona, Ceftriaxone, and others. Staphylococcus aureus and Staphylococcus epidermidis are 100% resistant to Ampicillin, Ceftriaxone, and Cefotaxime. For more efficient antibiotic prescriptions, the causative microorganisms, and their current susceptibility patterns need to be mandated for testing before prescribing any antibiotics to patients. Prescriptions are frequently based solely on general information about the antibiotic's function, rather than on individual response variation to the pathogen and the antibiotic. Particularly when the common pathogens in this study show multidrug resistance in wounds.
Recognition of etiologies of lower respiratory tract infection (LRTI) may help in delivering effective treatment options and circumvent emergence of antibiotic resistance. This study was carried out to uncover bacterial profile and antibiotic sensitivity patterns among 310 LRTI patients attended Rizagary Hospital between January 2014 to December 2016. Standard laboratory techniques were applied in collecting, processing, and culturing sputum and bronchial wash specimens. VITEK® 2 compact systems were used to identify bacteria and their antibiotic sensitivity patterns. Results showed that Streptococcus parasanguinis and Acinetobacter baumannii were the most abundant gram-positive and gram-negative bacteria (GPB & GNB), respectively, isolated from sputum specimens. From bronchial wash specimens, only GNB were detected and Serratia marcescens was the most abundant one. Antibiotic sensitivity tests revealed that Streptococcus parasanguinis was the most resistant GPB and Acinetobacter baumannii was the most resistant GNB. Sputum recovered GPB were highly resistant to Ampicillin, Erythromycin, Levofloxacin, Trimethoprim/Sulfamethoxazole, and Tetracycline. Bronchial wash recovered GNB were highly resistant to Ampicillin, Minocycline, Pefloxacin, Piperacillin, and Ticarcillin. In conclusion, LRTIs are mainly associated with GNB rather than GPB. The recovered Streptococcus parasanguinis and Acinetobacter baumannii were found to be multidrug-resistant pathogens. Ampicillin was ineffective against any of recovered pathogenic bacteria.
Silver nanoparticles (Ag NPs) were produced through nanosecond laser in deionized water. These nanoparticles were characterized by UV–VIS spectrometer and transmission electron microscopy. VITEK®2 compact system was used to identify Escherichia coli (ESBL strain) and Staphylococcus aureus (MRSA strain) as multidrug-resistance (MDR) bacteria. The antibacterial activity of Ag NPs, ampicillin (AMP), and their combinations was tested against both bacterial isolates through standard microbiological culturing techniques. Our data show that both of E. coli and S. aureus were highly resistant to AMP. Ag NPs alone reduced growth in both bacterial isolates considerably. Growth declined drastically in both bacteria when AMP was used in combination with Ag NPs. The minimal inhibitory concentration of combined agents for E. coli was 20 µg/ml Ag NPs + 1 mg AMP/ml and for S. aureus was 10 µg/ml Ag NPs + 1 mg AMP/ml. The results show that the Ag NPs have great potentials in enhancing the antimicrobial activities of drugs that used to be ineffective against MDR bacteria. Administering combinations of antibiotic(s) with AgNPs may help in treating patients suffering from infections caused by MDR bacteria. Further in vivo and in vitro investigations are required to evaluate the side effects of these combinations.
The interleukin-1 family has multifaceted roles in men ٫ s reproductive syste. Out of these is interleukin-1 receptor antagonist (IL-1RN) which exists in men gonads, and in case of infection and inflammatory process, its activity is increased. The current study aims to verify a possible linkage of Variable Number Tandem Repeat (VNTR) polymorphism of the IL-1RN gene with human men infertility. The study groups enrolled included 100 infertile men and 100 fertile and healthy men. Their seminal fluids were subjected to analysis. Also peripheral blood samples were collected for the assessment or detection of polymorphic Variable Number Tandem Repeats (VNTR) polymorphism of interleukin-1 receptor antagonist gene (IL-1RN). Two alleles, namely IL-1RN1 allele corresponding to 410bp fragment and IL-11RN2 that corresponding to 240bp fragments, are a marker for human men infertility, detected by PCR technique. The results delineated a high frequency of IL-1RN2 allelic gene variants (26%), and two VNTR allelic gene variants carriers IL-1RN1 and IL-1RN2 (16%) among infertile men with significant impacts on sperm motility and morphology (P< 0.000-0.002) respectively. This prospective study in Kurdistan region (Erbil-Iraq) defined a significant impact of VNTR polymorphism of IL-1RN gene in the etiology of men infertility especially on sperm motility and morphology; particularly carriers of IL-1RN2 allelic variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.