Training of machine learning models in a Datacenter, with data originated from edge nodes, incurs high communication overheads and violates a user's privacy. These challenges may be tackled by employing Federated Learning (FL) machine learning technique to train a model across multiple decentralized edge devices (workers) using local data. In this paper, we explore an approach that identifes the most representative updates made by workers and those are only uploaded to the central server for reducing network communication costs. Based on this idea, we propose a FL model that can mitigate communication overheads via clustering analysis of the worker local updates. The Cluster Analysis-based Federated Learning (CA-FL) model is studied and evaluated in human activity recognition (HAR) datasets. Our evaluation results show the robustness of CA-FL in comparison with traditional FL in terms of accuracy and communication costs on both IID and non-IID cases.
Federated Learning (FL) provides a promising solution for preserving privacy in learning shared models on distributed devices without sharing local data on a central server. However, most existing work shows that FL incurs high communication costs. To address this challenge, we propose a clustering-based federated solution, entitled Federated Learning via Clustering Optimization (FedCO), which optimizes model aggregation and reduces communication costs. In order to reduce the communication costs, we first divide the participating workers into groups based on the similarity of their model parameters and then select only one representative, the best performing worker, from each group to communicate with the central server. Then, in each successive round, we apply the Silhouette validation technique to check whether each representative is still made tight with its current cluster. If not, the representative is either moved into a more appropriate cluster or forms a cluster singleton. Finally, we use split optimization to update and improve the whole clustering solution. The updated clustering is used to select new cluster representatives. In that way, the proposed FedCO approach updates clusters by repeatedly evaluating and splitting clusters if doing so is necessary to improve the workers’ partitioning. The potential of the proposed method is demonstrated on publicly available datasets and LEAF datasets under the IID and Non-IID data distribution settings. The experimental results indicate that our proposed FedCO approach is superior to the state-of-the-art FL approaches, i.e., FedAvg, FedProx, and CMFL, in reducing communication costs and achieving a better accuracy in both the IID and Non-IID cases.
Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
Recent advances in sensor technology are expected to lead to a greater use of wireless sensor networks (WSNs) in industry, logistics, healthcare, etc. On the other hand, advances in artificial intelligence (AI), machine learning (ML), and deep learning (DL) are becoming dominant solutions for processing large amounts of data from edge-synthesized heterogeneous sensors and drawing accurate conclusions with better understanding of the situation. Integration of the two areas WSN and AI has resulted in more accurate measurements, context-aware analysis and prediction useful for smart sensing applications. In this paper, a comprehensive overview of the latest developments in context-aware intelligent systems using sensor technology is provided. In addition, it also discusses the areas in which they are used, related challenges, motivations for adopting AI solutions, focusing on edge computing, i.e., sensor and AI techniques, along with analysis of existing research gaps. Another contribution of this study is the use of a semantic-aware approach to extract survey-relevant subjects. The latter specifically identifies eleven main research topics supported by the articles included in the work. These are analyzed from various angles to answer five main research questions. Finally, potential future research directions are also discussed.
The successful convergence of Internet of Things (IoT) technology and distributed machine learning have leveraged to realise the concept of Federated Learning (FL) with the collaborative efforts of a large number of low-powered and smallsized edge nodes. In Wireless Networks (WN), an energy-effcient transmission is a fundamental challenge since the energy resource of edge nodes is restricted. In this paper, we propose an Energyaware Multi-Criteria Federated Learning (EaMC-FL) model for edge computing. The proposed model enables to collaboratively train a shared global model by aggregating locally trained models in selected representative edge nodes (workers). The involved workers are initially partitioned into a number of clusters with respect to the similarity of their local model parameters. At each training round a small set of representative workers is selected on the based of multi-criteria evaluation that scores each node representativeness (importance) by taking into account the trade-off among the node local model performance, consumed energy and battery lifetime. We have demonstrated through experimental results the proposed EaMC-FL model is capable of reducing the energy consumed by the edge nodes by lowering the transmitted data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.