Surfactants are well known as permeation enhancers. Span 60 microparticles encapsulating different concentrations of metformin HCl were prepared by using rapid congeal melting technique. Electro-scanning microscope showed smooth surface but less round microparticles. The actual drug content was nearly equal in the different particle sizes of the microparticles. Differential scanning calorimetry results indicated the molecular distribution of the drug molecules with no evidence of drug thermal degradation. The drug release profile from the microparticles has, in each case, burst and there was incomplete drug release. The drug partition coefficient is markedly enhanced as a result of its molecular dispersion in Span 60, indicating the increasing of the drug lipophilicity as a result of its encapsulation in the polar part of the surfactant. Non-everted sac was used to study the drug permeability after solving its critical points. Compared to pure drug, the permeability profile of the drug increased from the Span 60-encapsulated drug, with a total permeation of 68% and drug absorption enhancement of 253%. The drug permeation enhancement mechanism was suggested to be molecular dispersion in the matrix, which is emulsified by Tween 80, and this leads to increasing the hydrophilic paracellular pathway of the drug. Considering the emulsification system of the GIT, which emulsifies the Span 60 instead of Tween 80, a huge improvement of the biopharmaceutics classification system class III permeability and consequently bioavailability could be expected. In addition, this study will open the door to the use of the same technique for enhancing the drug absorption mechanisms by the paracellular pathway for rapid and complete pharmacological effect.
Zaleplon (ZP) is a sedative and hypnotic drug used for the treatment of insomnia. Despite its potent anticonvulsant activity, ZP is not commonly used for the treatment of convulsion since ZP is characterized by its low oral bioavailability as a result of poor solubility and extensive liver metabolism. The following study aimed to formulate specifically controlled release nano‐vehicles for oral and parenteral delivery of ZP to enhance its oral bioavailability and biological activity. A modified single emulsification–solvent evaporation method of sonication force was adopted to optimize the inclusion of ZP into biodegradable nanoparticles (NPs) using poly (dl‐lactic‐co‐glycolic acid) (PLGA). The impacts of various formulation variables on the physicochemical characteristics of the ZP‐PLGA‐NPs and drug release profiles were investigated. Pharmacokinetics and pharmacological activity of ZP‐PLGA‐NPs were studied using experimental animals and were compared with generic ZP tablets. Assessment of gamma‐aminobutyric acid (GABA) level in plasma after oral administration was conducted using enzyme‐linked immunosorbent assay. The maximal electroshock‐induced seizures model evaluated anticonvulsant activity after the parenteral administration of ZP‐loaded NPs. The prepared ZP‐PLGA NPs were negatively charged spherical particles with an average size of 120–300 nm. Optimized ZP‐PLGA NPs showed higher plasma GABA levels, longer sedative, hypnotic effects, and a 3.42‐fold augmentation in oral drug bioavailability in comparison to ZP‐marketed products. Moreover, parenteral administration of ZP‐NPs showed higher anticonvulsant activity compared to free drug. Oral administration of ZP‐PLGA NPs achieved a significant improvement in the drug bioavailability, and parenteral administration showed a pronounced anticonvulsant activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.