The present study aimed to evaluate the effect of trigonelline (TRG) on the hepatic complications associated with high-fat high-fructose (HFHF) diet-induced insulin resistance (IR) in rats. IR was induced by giving a saturated fat diet and 10% fructose in drinking water to rats for 8 weeks. Insulin-resistant rats were orally treated with TRG (50 and 100 mg/kg), sitagliptin (SIT; 5 mg/kg), or a combination of TRG (50 mg/kg) and SIT (5 mg/kg) for 14 days. Liver homogenates were used for assessment of hepatic lipids, oxidative stress biomarkers, and inflammatory cytokines. Histopathological and DNA cytometry examinations were carried out for hepatic and pancreatic tissues. Hepatic tissues were examined using Fourier-transform infrared spectroscopy for assessment of any molecular changes. Results of the present study revealed that oral treatment of insulin-resistant rats with TRG or TRG in combination with SIT significantly decreased homeostatic model assessment of IR, hepatic lipids, oxidative stress biomarkers, and the inflammatory cytokines. TRG or TRG in combination with SIT ameliorated the histopathological, DNA cytometry, and molecular alterations induced by a HFHF diet. Finally, it can be concluded that TRG has beneficial effects on the hepatic complications associated with IR due to its hypoglycemic effect and antioxidant potential.
Hepatic encephalopathy (HE) depicts the cluster of neurological alterations that occur during acute or chronic hepatic injury. This study was aimed to evaluate the possible synergistic effect between aminoguanidine (AG; 100 mg/kg; p.o.) and l-carnosine (CAR; 100 mg/kg; p.o.) on HE that was induced by thioacetamide (TAA; 100 mg/kg; i.p) thrice weekly for six weeks. Twenty-four hours after the last treatment; behavioral changes, biochemical parameters, histopathological analysis, immunohistochemical and ultrastructural studies were conducted. Combining AG with CAR improved TAA-induced locomotor impairment and motor incoordination evidenced by; reduced locomotor activity and decline in motor skill performance as well as ameliorated cognitive deficits. Moreover, both drugs restored the levels of serum hepatic enzymes as well as serum and brain levels of ammonia. In addition to, the combination significantly modulated hepatic and brain oxidative stress biomarkers, inflammatory cytokines and cleaved caspase-3 expression. Furthermore, they succeeded to activate nuclear erythroid 2-related factor 2 (Nrf2) expression and ameliorate markers of HE including hepatic necrosis and brain astrocyte swelling. This study depicts that combining AG with CAR exerted new intervention for hepatic and brain damage in HE due to their complementary antioxidant, anti-inflammatory effect and hypoammonemic effects via Nrf2/HO-1 activation and NO inhibition.
Potassium dichromate (PD) is an environmental xenobiotic commonly recognized as teratogenic, carcinogenic, and mutagenic in animals and humans. The present study was conducted to investigate the role of tangeretin (TNG) as a neuro-protective drug against PD-induced brain injury in rats. Thirty-two male adult Wistar rats were blindly divided into four groups (8 rats/group). The first group received saline intranasally (i.n.). The second group received a single dose of PD (2 mg/kg, i.n.). The third group received TNG (50 mg/kg; orally), for 14 days followed by i.n. of PD on the last day of the experiment. The fourth group received TNG (100 mg/kg; orally) for 14 days followed by i.n. of PD on the last day of the experiment. Behavioral indices were evaluated 18 h after PD administration. Neuro-biochemical indices and histopathological studies were evaluated 24 h after PD administration. Results of the present study revealed that rats intoxicated with PD induced- oxidative stress and inflammation via an increase in malondialdehyde (MDA) and a decrease in nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and glutathione(GSH) levels with an increase in brain contents of tumor necrosis factor-alpha (TNF-α) and interleukin (IL-6). Pre-treatment with TNG (100 mg/kg; orally) ameliorated behavior, cholinergic activities, and oxidative stress and decreased the elevated levels of pro-inflammatory mediators; TNF-α and IL-6 with a decrease in brain content of chromium residues detected by Plasma–Optical Emission Spectrometer. Also, the histopathological picture of the brain was improved significantly in rats that received TNG (100 mg/kg). Additionally, TNG decreased caspase-3 expression in the brain of PD rats. In conclusion, TNG possesses a significant neuroprotective role against PD-induced acute brain injury via modulating the Nrf2 signaling pathway and quenching the release of inflammatory mediators and apoptosis in rats. Graphical abstract
Aluminum (Al) is a ubiquitous xenobiotic with known toxicity for both humans and animals. Our study was conducted to investigate the protective role of febuxostat (Feb) against aluminum chloride (AlCl3)-induced hepatorenal injury in rats. Hepatorenal injury was induced by oral administration of AlCl3 (40 mg/kg b.w.), for 2 months. Twenty-four male Sprague–Dawley rats were randomly allocated into four groups (six rats/group). The first group received the vehicle thought the experiment. The second group was considered as a control positive group. The third and fourth groups received oral treatment of Feb (10 mg/kg.b.w.) and (15 mg/kg.b.w.), respectively with AlCl3, concurrently for 2 months. Twenty-four hours, after the last treatment, serum biochemical, molecular, histopathology, and immunohistochemical studies were evaluated. Our findings showed that rats intoxicated with Alcl3 had disturbed biochemical picture. In addition, intoxication with AlCl3 increased oxidative stress and apoptosis, as demonstrated by an increase in malodialdeyde (MDA), carnitine o-acetyltransferase (Crat), and carbonic anhydrase (Car3) with a decrease in glutathione (GSH), MAP kinase-interacting serine/threonine kinase (MNK) and nuclear factor-erythroid 2-related factor 2 (Nrf2) mRNA expression. Furthermore, the levels of tumor necrosis factor-alpha (TNF-α) and the levels of caspase-3 were elevated with sever hepatic and renal pathological changes. Conversely, Feb (15 mg/kg.b.w.) could improve the serum biochemical indices and repressed MDA, Crat, and Car3 levels, whereas it increased GSH, MNK, and Nrf2 levels. Feb inhibited the apoptotic effect of AlCl3 in the liver and kidney by decreasing caspase-3 and TNF-α expression. The protective effect of Feb against AlCl3 toxicity was confirmed by histopathological findings. Moreover, molecular docking studies supported the anti-inflammatory effect of Feb due to its significant binding interactions with cyclooxygenase-1 (COX-1), NF-kappa-B-inducing kinase (NIK), and mitogen-activated protein kinases-p38 (MAPK-p38). The findings suggest that Feb system Feb can avert Alcl3-induced hepatotoxicity and nephrotoxicity by enhancing the antioxidant defense system, and inhibiting the inflammatory cascade and apoptosis.
Nonalcoholic fatty liver disease (NAFLD) is a complex hepato-metabolic syndrome with multi-etiological pathways. No effective drugs have been settled for the effective therapy of NAFLD. The purpose of this study was to investigate the modulatory effects of cilostazol (CILO, 50 and 100 mg/kg.p.o.) against NAFLD induced by high fat diet rich in cholesterol (HFD-CH) for 10 weeks. Thirty male Sprague dawely rats were divided into 4 groups (8 rat / group).Normal control group supplied with normal chow diet. Control positive group received high fat diet rich in cholesterol for 10 weeks. In addition, two CILO groups received (CILO, 50 and 100 mg/kg.p.o.). Oral administration of (CILO; 100 mg/kg) showed promising results in reducing fasting glucose and insulin levels. Moreover, CILO could reduce the elevated hepatic lipids, oxidative stress biomarkers and inflammatory cytokines. In addition, CILO succeeded to restore the total protein levels and activate nuclear factor erythroid-related factor 2/ heme oxygenase-1 (Nrf2/HO-1) activity. Furthermore, administration of CILO for NAFLD rats succeeded to show corrected and normalized FTIR spectra. We also investigated the plausible binding interactions of CILO with various biological targets using a molecular docking approach, and the results showed that CILO had an excellent docking energy score and significant binding interactions with the core amino acids involved in the active pocket for the enzymes studied. This study depicts that CILO exerted new intervention for NAFLD due to its complementary antihyperlipdemic, anti-inflammatory effects and antioxidant potential, via Nrf2/HO-1 activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.