The mechanisms by which metformin (dimethylbiguanide) inhibits hepatic gluconeogenesis at concentrations relevant for type 2 diabetes therapy remain debated. Two proposed mechanisms are 1) inhibition of mitochondrial Complex 1 with consequent compromised ATP and AMP homeostasis or 2) inhibition of mitochondrial glycerophosphate dehydrogenase (mGPDH) and thereby attenuated transfer of reducing equivalents from the cytoplasm to mitochondria, resulting in a raised lactate/pyruvate ratio and redox-dependent inhibition of gluconeogenesis from reduced but not oxidized substrates. Here, we show that metformin has a biphasic effect on the mitochondrial NADH/ NAD redox state in mouse hepatocytes. A low cell dose of metformin (therapeutic equivalent: <2 nmol/mg) caused a more oxidized mitochondrial NADH/NAD state and an increase in lactate/pyruvate ratio, whereas a higher metformin dose (>5 nmol/mg) caused a more reduced mitochondrial NADH/NAD state similar to Complex 1 inhibition by rotenone. The low metformin dose inhibited gluconeogenesis from both oxidized (dihydroxyacetone) and reduced (xylitol) substrates by preferential partitioning of substrate toward glycolysis by a redoxindependent mechanism that is best explained by allosteric regulation at phosphofructokinase-1 (PFK1) and/or fructose 1,6-bisphosphatase (FBP1) in association with a decrease in cell glycerol 3-phosphate, an inhibitor of PFK1, rather than by inhibition of transfer of reducing equivalents. We conclude that at a low pharmacological load, the metformin effects on the lactate/ pyruvate ratio and glucose production are explained by attenuation of transmitochondrial electrogenic transport mechanisms with consequent compromised malate-aspartate shuttle and changes in allosteric effectors of PFK1 and FBP1.
The chronic effects of metformin on liver gluconeogenesis involve repression of the G6pc gene, which is regulated by the carbohydrate-response element–binding protein through raised cellular intermediates of glucose metabolism. In this study we determined the candidate mechanisms by which metformin lowers glucose 6-phosphate (G6P) in mouse and rat hepatocytes challenged with high glucose or gluconeogenic precursors. Cell metformin loads in the therapeutic range lowered cell G6P but not ATP and decreased G6pc mRNA at high glucose. The G6P lowering by metformin was mimicked by a complex 1 inhibitor (rotenone) and an uncoupler (dinitrophenol) and by overexpression of mGPDH, which lowers glycerol 3-phosphate and G6P and also mimics the G6pc repression by metformin. In contrast, direct allosteric activators of AMPK (A-769662, 991, and C-13) had opposite effects from metformin on glycolysis, gluconeogenesis, and cell G6P. The G6P lowering by metformin, which also occurs in hepatocytes from AMPK knockout mice, is best explained by allosteric regulation of phosphofructokinase-1 and/or fructose bisphosphatase-1, as supported by increased metabolism of [3-3H]glucose relative to [2-3H]glucose; by an increase in the lactate m2/m1 isotopolog ratio from [1,2-13C2]glucose; by lowering of glycerol 3-phosphate an allosteric inhibitor of phosphofructokinase-1; and by marked G6P elevation by selective inhibition of phosphofructokinase-1; but not by a more reduced cytoplasmic NADH/NAD redox state. We conclude that therapeutically relevant doses of metformin lower G6P in hepatocytes challenged with high glucose by stimulation of glycolysis by an AMP-activated protein kinase–independent mechanism through changes in allosteric effectors of phosphofructokinase-1 and fructose bisphosphatase-1, including AMP, Pi, and glycerol 3-phosphate.
Elevation in hepatocyte G6P and downstream metabolites, with consequent liver Gck repression, is a potential contributing mechanism to the loss of GKA efficacy during chronic therapy. Cell metformin loads within the therapeutic range attenuate the effect of high glucose on G6P and on glucose-regulated gene expression.
Aim: To test the hypothesis that glucokinase activators (GKAs) induce hepatic adaptations that alter intra-hepatocyte metabolite homeostasis. Methods: C57BL/6 mice on a standard rodent diet were treated with a GKA (AZD1656) acutely or chronically. Hepatocytes were isolated from the mice after 4 or 8 weeks of treatment for analysis of cellular metabolites and gene expression in response to substrate challenge. Results: Acute exposure of mice to AZD1656 or a liver-selective GKA (PF-04991532), before a glucose tolerance test, or challenge of mouse hepatocytes with GKAs ex vivo induced various Carbohydrate response element binding protein (ChREBP) target genes, including Carbohydrate response element binding protein beta isoform (ChREBP-β), Gckr and G6pc. Both glucokinase activation and ChREBP target gene induction by PF-04991532 were dependent on the chirality of the molecule, confirming a mechanism linked to glucokinase activation. Hepatocytes from mice treated with AZD1656 for 4 or 8 weeks had lower basal glucose 6-phosphate levels and improved ATP homeostasis during high substrate challenge. They also had raised basal ChREBP-β mRNA and AMPK-α mRNA (Prkaa1, Prkaa2) and progressively attenuated substrate induction of some ChREBP target genes and Prkaa1 and Prkaa2. Conclusions: Chronic GKA treatment of C57BL/6 mice for 8 weeks activates liver ChREBP and improves the resilience of hepatocytes to compromised ATP homeostasis during high-substrate challenge. These changes are associated with raised mRNA levels of ChREBP-β and both catalytic subunits of AMP-activated protein kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.