Fluoxetine, a commonly prescribed selective serotonin reuptake inhibitor antidepressant, has been shown to increase hepatic lipid accumulation, a key factor in the development of non-alcoholic fatty liver disease. Interestingly, fluoxetine has also been reported to increase peripheral serotonin synthesis. As emerging evidence suggests that serotonin may be involved in the development of non-alcoholic fatty liver disease we sought to determine if fluoxetine-induced hepatic lipid accumulation is mediated via altered serotonin production. Fluoxetine treatment increased lipid accumulation in association with increased mRNA expression of tryptophan hydroxylase 1 (<i>Tph1, serotonin biosynthetic enzyme) and intracellular serotonin content. Serotonin alone had a similar effect to increase lipid accumulation. Moreover, blocking serotonin synthesis reversed the fluoxetine-induced increases in lipid accumulation. Collectively, these data suggest that fluoxetine induced lipid accumulation can be mediated, in part, by elevated serotonin production. These results suggest a potential therapeutic target to ameliorate the adverse metabolic effects of fluoxetine exposure.
Chemical and electrochemical doping of π-conjugated polymers is an important aspect in determining the performance and enabling the operation of many organic electronic devices, from organic light emitting diodes and thermoelectrics to organic electrochemical transistors. In both chemical doping and electrochemical doping an ionized dopant or counterion is present along with the doped π-conjugated polymer. This dopant or counterion is not a benign spectator, rather, its presence can significantly impact the optical, electronic, and thermoelectric properties of the resulting material. Here, we investigate how counterion structure impacts the electrochemical doping ability, oxidation potential, ionization energy, and polaron absorbance of regioregular (rr) and regiorandom (rra) P3HT. We find that in most cases the anion has a small effect on the polymer oxidation potential, except for in the case of rr-P3HT with the large tetrakis[3,5-bis(trifluoromethyl)phenyl]borate anion. We propose that this large anion is excluded from the crystalline regions and thus the oxidation potential is similar to that of rra-P3HT. The anions also result in significant differences in polaron absorbance and ionization energies, thereby emphasizing the important role of the counterion in determining the optical and electronic properties of doped π-conjugated polymers.
Major depressive disorder and other neuropsychiatric disorders are often managed with long-term use of antidepressant medication. Fluoxetine, an SSRI antidepressant, is widely used as a first-line treatment for neuropsychiatric disorders. However, fluoxetine has also been shown to increase the risk of metabolic diseases such as nonalcoholic fatty liver disease. Fluoxetine has been shown to increase hepatic lipid accumulation in vivo and in vitro. In addition, fluoxetine has been shown to alter the production of prostaglandins which have also been implicated in the development of non-alcoholic fatty liver disease. The goal of this study was to assess the effect of fluoxetine exposure on the prostaglandin biosynthetic pathway and lipid accumulation in a hepatic cell line (H4-II-E-C3 cells). Fluoxetine treatment increased mRNA expression of prostaglandin biosynthetic enzymes (Ptgs1, Ptgs2, and Ptgds), PPAR gamma (Pparg), and PPAR gamma downstream targets involved in fatty acid uptake (Cd36, Fatp2, and Fatp5) as well as production of 15-deoxy-Δ 12,14 PGJ 2 a PPAR gamma ligand. The effects of fluoxetine to induce lipid accumulation were attenuated with a PTGS1 specific inhibitor (SC-560), whereas inhibition of PTGS2 had no effect. Moreover, SC-560 attenuated 15-deoxy-Δ 12,14 PGJ 2 production and expression of PPAR gamma downstream target genes. Taken together these results suggest that fluoxetine-induced lipid abnormalities appear to be mediated via PTGS1 and its downstream product 15d-PGJ 2 and suggest a novel therapeutic target to prevent some of the adverse effects of fluoxetine treatment.15-deoxy-Δ 12,14 PGJ 2 (15d-PGJ 2 ), fatty acid uptake, fluoxetine, non-alcoholic fatty liver disease (NAFLD), peroxisome proliferator-activated receptor gamma (PPARG), prostaglandin, prostaglandin-endoperoxide synthase 1 (PTGS1), prostaglandin-endoperoxide synthase 2 (PTGS2), selective serotonin reuptake inhibitor (SSRI), steatosis 1 | INTRODUCTION Major depressive disorder (MDD) is a prevalent and often recurrent illness affecting nearly 350 million individuals worldwide and is predicted to be the leading cause of disability by 2030 (Longfei et al., 2015; World Health Organization, 2017). A global burden of disease study saw a 49.86% increase in incident cases of depression worldwide from 1990 to 2017 (Liu et al., 2020), with the financial burden of MDD in 2010 exceeding USD 210.5 billion in the
As cannabis use during pregnancy increases, it is important to understand its effects on the developing fetus. Particularly, the long-term effects of its psychoactive component, delta-9-tetrahydrocannabinol (THC), on the offspring’s reproductive health are not fully understood. This study examined the impact of gestational THC exposure on the miRNA profile in adult rat ovaries and the possible consequences on ovarian health. Prenatal THC exposure resulted in the differential expression of 12 out of 420 evaluated miRNAs. From the differentially expressed miRNAs, miR-122-5p, which is highly conserved among species, was the only upregulated target and had the greatest fold change. The upregulation of miR-122-5p and the downregulation of its target insulin-like growth factor 1 receptor (Igf1r) were confirmed by RT-qPCR. Prenatally THC-exposed ovaries had decreased IGF-1R-positive follicular cells and increased follicular apoptosis. Furthermore, THC decreased Igf1r expression in ovarian explants and granulosa cells after 48 h. As decreased IGF-1R has been associated with diminished ovarian health and fertility, we propose that these THC-induced changes may partially explain the altered ovarian follicle dynamics observed in THC-exposed offspring. Taken together, our data suggests that prenatal THC exposure may impact key pathways in the developing ovary, which could lead to subfertility or premature reproductive senescence.
Synthesis of new heterocyclic compounds containing four five-membered rings together was the main goal of this work. The new derivatives of [tetrakis (1,2,4triazole /1,3,4-thiadiazole /1,3,4-oxadiazole][bis-(benzene-1,3,5-triyl)] dioxymethylene A7-A18 were synthesized by the reaction of [bis-(dimethyl 5-ylisophthalate)] dioxymethylene compound A1 which was previously prepared from the reaction of 1,2-dibromomethan and dimethyl 5-hydroxyisophthalate, then treated with hydrazine hydrate to yield the corresponding acid hydrazide A2. In the next step, compound A2 was refluxed with 4-substituted isothiocyanate to give substituted thiosemicarbazides A3-A6. The treatment of the latter compounds in basic medium of 2M of NaOH afforded 1,2,4-Triazole derivatives A7-A10. Whereas the reaction of the same compounds with concentrated sulfuric acid gave 1,3,4thiadiazoles A11-A14. Furthermore, the new derivatives of 1,3,4-oxadiazole A15-A18 were obtained by the reaction of thiosemicarbazides and tosyl chloride in presence of pyridine. (C. H. N.) elemental analysis, FT-IR, and 1 HNMR techniques were used to characterize the chemical structure of some of the new synthesized compounds which also exhibited an important biological activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.