Air pollution has become a major issue of modern megalopolis because of industrial emissions and increasing urbanization along with traffic jams and heating/cooling of buildings. Monitoring urban air quality is therefore required by municipalities and by the civil society. Current monitoring systems rely on reference sensing stations that are precise but massive, costly and therefore seldom. In this paper, we focus on an alternative or complementary approach, with a network of low cost and autonomic wireless sensors, aiming at a finer spatiotemporal granularity of sensing. Generic deployment models of the literature are not adapted to the stochastic nature of pollution sensing. Our main contribution is to design integer linear programming models that compute sensor deployments capturing both the coverage of pollution under time-varying weather conditions and the connectivity of the infrastructure. We evaluate our deployment models on a real data set of Greater London. We analyze the performance of the proposed models and show that our joint coverage and connectivity formulation is tight and compact, with a reasonable enough execution time. We also conduct extensive simulations to derive engineering insights for effective deployments of air pollution sensors in an urban environment.
Recently, air pollution monitoring emerges as a main service of smart cities because of the increasing industrialization and the massive urbanization. Wireless sensor networks (WSN) are a suitable technology for this purpose thanks to their substantial benefits including low cost and autonomy. Minimizing the deployment cost is one of the major challenges in WSN design, therefore sensors positions have to be carefully determined. In this paper, we propose two integer linear programming formulations based on real pollutants dispersion modeling to deal with the minimum cost WSN deployment for air pollution monitoring. We illustrate the concept by applying our models on real world data, namely the Nottingham City street lights. We compare the two models in terms of execution time and show that the second flowbased formulation is much better. We finally conduct extensive simulations to study the impact of some parameters and derive some guidelines for efficient WSN deployment for air pollution monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.