The low propagation loss of electromagnetic radiation below 1 MHz offers significant opportunities for low power, long range communication systems to meet growing demand for Internet of Things applications. However, the fundamental reduction in efficiency as antenna size decreases below a wavelength (30 m at 1 MHz) has made portable communication systems in the very low frequency (VLF: 3–30 kHz) and low frequency (30–300 kHz) ranges impractical for decades. A paradigm shift to piezoelectric antennas utilizing strain-driven currents at resonant wavelengths up to five orders of magnitude smaller than electrical antennas offers the promise for orders of magnitude efficiency improvement over the electrical state-of-the-art. This work demonstrates a lead zirconate titanate transmitter > 6000 times more efficient than a comparably sized electrical antenna and capable of bit rates up to 60 bit/s. Detailed analysis of design parameters offers a roadmap for significant future improvement in both radiation efficiency and data rate.
This paper presents a short review of the microwave acoustics area, where exciting material innovations and performance advancements have been made in the past decade. The ever-growing demand for more sophisticated passive signal processing functions on-chip has fueled these developments. As a result, microwave acoustic devices have maintained performance leadership in mobile applications. By evaluating three fundamental parameters, namely electromechanical coupling (k 2 ), quality factors, and frequency scalability, of microwave acoustics, this paper aims to, extensively but not exhaustively, capture the rationales behind approaches achieving higher performance microsystems. Outlooks for different material systems and addressing their underlying challenges are also offered in hopes of establishing a balanced roadmap for future microwave acoustics development.
Microwave photonics, a field that crosscuts microwave/millimeter-wave engineering with optoelectronics, has sparked great interest from research and commercial sectors. This multidisciplinary fusion can achieve ultrawide bandwidth and ultrafast speed that were considered impossible in conventional chip-scale microwave/millimeter-wave systems. Conventional microwave-to-photonic converters, based on resonant acousto-optic modulation, produce highly efficient modulation but sacrifice bandwidth and limit their applicability for most real-world microwave signal-processing applications. In this paper, we build highly efficient and wideband microwave-to-photonic modulators using the acousto-optic effect on suspended lithium niobate thin films. A wideband microwave signal is first piezoelectrically transduced using interdigitated electrodes into Lamb acoustic waves, which directly propagates across an optical waveguide and causes refractive index perturbation through the photoelastic effect. This approach is power-efficient, with phase shifts up to 0.0166 rad / √ mW over a 45 μm modulation length and with a bandwidth up to 140 MHz at a center frequency of 1.9 GHz. Compared to the state-of-the-art, a 9 × more efficient modulation has been achieved by optimizing the acoustic and optical modes and their interactions.
In this paper, we designed, implemented, and characterized compact Mach-Zehnder interferometer-based electro-optic modulators. The modulator utilizes spiral-shaped optical waveguides on Z-cut lithium niobate and the preeminent electro-optic effect which is applied using top and bottom electrodes. Optical waveguides are made of rib etched lithium niobate waveguides with bottom silicon oxide cladding, while SU8 polymer covers the top and sides of the rib waveguides. The proposed implementation resulted in low optical losses < 1.3 dB/cm. Moreover, we achieved compact modulators that fit 0.286 cm and 2 cm long optical waveguides in 110 µm × 110 µm and 300 µm × 300 µm areas, respectively. For single arm modulation, the modulators achieved a VπL of 7.4 V.cm and 6.4 V.cm and 3-dB bandwidths of 9.3 GHz and 2.05 GHz, respectively. Push-pull modulation is expected to cut these VπL in half. The proposed configuration avoids traveling wave modulation complexities and represents a key development towards miniature and highly integrated photonic circuits.
This letter presents the first piezoelectric micromachined ultrasonic transducer (PMUT) based on thin-film lithium niobate (LiNbO 3). The figures of merit (FoMs) of LiNbO 3 as ultrasound sensors and transducers are first studied, showing great prospective as a balanced transceiver platform. Efficient flexural mode excitation is achieved using a proposed lateral-field-excitation (LFE) structure. The implemented device shows a flexural mode at 7.6 MHz, with a high electromechanical coupling (k 2) of 4.2%. Measured quality factor (Q) in vacuum is 2605, indicating the low structural loss, while measured Q in air is 264, suggesting the ultrasound radiation. A dynamic displacement sensitivity of 20.2 nm/V is measured. Upon further optimizations, LiNbO 3based PMUTs are promising candidates for miniature ultrasound applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.