The muscle synergy concept provides a widely-accepted paradigm to break down the complexity of motor control. In order to identify the synergies, different matrix factorisation techniques have been used in a repertoire of fields such as prosthesis control and biomechanical and clinical studies. However, the relevance of these matrix factorisation techniques is still open for discussion since there is no ground truth for the underlying synergies. Here, we evaluate factorisation techniques and investigate the factors that affect the quality of estimated synergies. We compared commonly used matrix factorisation methods: Principal component analysis (PCA), Independent component analysis (ICA), Non-negative matrix factorization (NMF) and second-order blind identification (SOBI). Publicly available real data were used to assess the synergies extracted by each factorisation method in the classification of wrist movements. Synthetic datasets were utilised to explore the effect of muscle synergy sparsity, level of noise and number of channels on the extracted synergies. Results suggest that the sparse synergy model and a higher number of channels would result in better estimated synergies. Without dimensionality reduction, SOBI showed better results than other factorisation methods. This suggests that SOBI would be an alternative when a limited number of electrodes is available but its performance was still poor in that case. Otherwise, NMF had the best performance when the number of channels was higher than the number of synergies. Therefore, NMF would be the best method for muscle synergy extraction.
The described methods are a promising tool for identifying latent developmental features occurring throughout childhood EEG.
Higher-order tensor decompositions have hardly been used in muscle activity analysis despite multichannel electromyography (EMG) datasets naturally occurring as multi-way structures. Here, we seek to demonstrate and discuss the potential of tensor decompositions as a framework to estimate muscle synergies from 3 rd -order EMG tensors built by stacking repetitions of multi-channel EMG for several tasks. We compare the two most widespread tensor decomposition models -Parallel Factor Analysis (PARAFAC) and Tucker -in muscle synergy analysis of the wrist's three main Degree of Freedoms (DoFs) using the public first Ninapro database. Furthermore, we proposed a constrained Tucker decomposition (consTD) method for efficient synergy extraction building on the power of tensor decompositions. This method is proposed as a direct novel approach for shared and task-specific synergy estimation from two biomechanically related tasks. Our approach is compared with the current standard approach of repetitively applying non-negative matrix factorisation (NMF) to a series of the movements. The results show that the consTD method is suitable for synergy extraction compared to PARAFAC and Tucker. Moreover, exploiting the multi-way structure of muscle activity, the proposed methods successfully identified shared and taskspecific synergies for all three DoFs tensors. These were found to be robust to disarrangement with regard to task-repetition information, unlike the commonly used NMF. In summary, we demonstrate how to use tensors to characterise muscle activity and develop a new consTD method for muscle synergy extraction that could be used for shared and task-specific synergies identification. We expect that this study will pave the way for the development of novel muscle activity analysis methods based on higher-order techniques.
Alzheimer's disease (AD) is a progressive and irreversible brain disorder of the nervous system affecting memory, thinking, and emotion. It is the most important cause of dementia and an influential social problem in all the world. The complexity of brain recordings has been successfully used to help to characterize AD. We have recently introduced multiscale dispersion entropy (MDE) as a very fast and powerful tool to quantify the complexity of signals. The aim of this study is to assess the ability of MDE, in comparison with multiscale permutation entropy (MPE) and multiscale entropy (MSE), to discriminate 36 AD patients from 26 elderly age-matched control subjects using resting-state magnetoencephalogram (MEG) recordings. The results showed that MDE, unlike MSE, does not lead to undefined values. Moreover, the differences between the MDE values for AD palatines versus controls were more significant than their corresponding MSE- and MPE-based values. In addition, the computation time for our recently developed MDE was considerably less than that for MSE and even MPE.
The muscle synergy concept provides the best framework to understand motor control and it has been recently utilised in many applications such as prosthesis control. The current muscle synergy model relies on decomposing multi-channel surface Electromyography (EMG) signals into a synergy matrix (spatial mode) and its weighting function (temporal mode). This is done using several matrix factorisation techniques, with Non-negative matrix factorisation (NMF) being the most prominent method. Here, we introduce a 4-order tensor muscle synergy model that extends the current state of the art by taking spectral information and repetitions (movements) into account. This adds more depth to the model and provides more synergistic information. In particular, we illustrate a proof-of-concept study where the Tucker3 tensor decomposition model was applied to a subset of wrist movements from the Ninapro database. The results showed the potential of Tucker3 tensor factorisation in finding patterns of muscle synergies with information about the movements and highlights the differences between the current and proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.