Road condition data are important in transportation management systems. Over the last decades, significant progress has been made and new approaches have been proposed for efficient collection of pavement condition data. However, the assessment of unpaved road conditions has been rarely addressed in transportation research. Unpaved roads constitute approximately 40% of the U.S. road network, and are the lifeline in rural areas. Thus, it is important for timely identification and rectification of deformation on such roads. This article introduces an innovative Unmanned Aerial Vehicle (UAV)-based digital imaging system focusing on efficient collection of surface condition data over rural roads. In contrast to other approaches, aerial assessment is proposed by exploring aerial imagery acquired from an unpiloted platform to derive a threedimensional (3D) surface model over a road distress area for distress measurement. The system consists of a lowcost model helicopter equipped with a digital camera, a Global Positioning System (GPS) receiver and an Inertial Navigation System (INS), and a geomagnetic sensor. A set of image processing algorithms has been developed for precise orientation of the acquired images, and generation of 3D road surface models and orthoimages, which allows for accurate measurement of the size and the dimension of the road surface distresses. The developed system has been tested over several test sites with roads of various surface distresses. The experiments show that the system is capable for providing 3D information of surface distresses for road condition assessment. Experiment results demonstrate that the system is very promising and provides high accuracy and reliable results. Evaluation of the system using 2D and 3D models with known dimensions shows that subcentimeter measurement accuracy is readily achieved. The comparison of the derived 3D information with the onsite manual measurements of the road distresses reveals differences of 0.50 cm, demonstrating the potential of the presented system for future practice.
ABSTRACT:Coastal mapping is essential for a number of applications such as coastal resource management, coastal environmental protection, and coastal development and planning. Coastal mapping has been carried out using a wide range of techniques such as ground surveying and aerial mapping. Recently, satellite images, active sensor elevation models, and multispectral and hyperspectral images have also been used in coastal mapping. The integration of two or more of these datasets can provide more reliable coastal information. This paper presents an alternative technique for coastal mapping using an AVIRIS image and a LIDAR-based DEM. The DEM is used to generate building cues that are converted to building polygons. Building pixels are then removed from the AVIRIS image, and a supervised classification is performed to generate road and shoreline classes. A number of image processing techniques are used to victories road and shoreline pixels. The geometric accuracy and the completeness of the results are evaluated. The average positional accuracy for the building, road, and shoreline layers are 2.3, 5.7 and 7.2 meters, with 93.2%, 91.3%, and 95.2% detection rates respectively. The results demonstrate the potential of using LIDAR-based DEMs to detect building cues and remove their corresponding pixels from the classification process. Thus, integrating laser and optical data can provide high quality coastal geospatial information.
Structure-from-motion (SfM) photogrammetry from unmanned aerial system (UAS) imagery is an emerging tool for repeat topographic surveying of dryland erosion. These methods are particularly appealing due to the ability to cover large landscapes compared to field methods and at reduced costs and finer spatial resolution compared to airborne laser scanning. Accuracy and precision of high-resolution digital terrain models (DTMs) derived from UAS imagery have been explored in many studies, typically by comparing image coordinates to surveyed check points or LiDAR datasets. In addition to traditional check points, this study compared 5 cm resolution DTMs derived from fixed-wing UAS imagery with a traditional ground-based method of measuring soil surface change called erosion bridges. We assessed accuracy by comparing the elevation values between DTMs and erosion bridges along thirty topographic transects each 6.1 m long. Comparisons occurred at two points in time (June 2014, February 2015 which enabled us to assess vertical accuracy with 3314 data points and vertical precision (i.e., repeatability) with 1657 data points. We found strong vertical agreement (accuracy) between the methods (RMSE 2.9 and 3.2 cm in June 2014 and February 2015, respectively) and high vertical precision for the DTMs (RMSE 2.8 cm). Our results from comparing SfM-generated DTMs to check points, and strong agreement with erosion bridge measurements suggests repeat UAS imagery and SfM processing could replace erosion bridges for a more synoptic landscape assessment of shifting soil surfaces for some studies. However, while collecting the UAS imagery and generating the SfM DTMs for this study was faster than collecting erosion bridge measurements, technical challenges related to the need for ground control networks and image processing requirements must be addressed before this technique could be applied effectively to large landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.