The genetic diversity of the HBV S gene has a significant impact on the prophylaxis and treatment of hepatitis B infection. The effect of selective pressure on this genetic alteration has not yet been studied in Iranian blood donors. To explore HBV evolution and to analyze the effects and patterns of hepatitis B surface antigen (HBsAg) mutations on blood screening assays, 358 Iranian blood donors diagnosed as asymptomatic HBV carriers were enrolled in this nationwide study. Large S and partial S genes were amplified and sequenced. HBV (sub) genotypes and synonymous and nonsynonymous mutations were investigated. The impact of naturally occurring mutations on HBsAg ELISA results was explored. Phylogenetic analyses revealed that isolated strains were of genotype D. The dominant subgenotype/subtype was D1/ayw2. Deletions and naturally occurring stop codons in the pre-S1 and major hydrophilic region (MHR) were identified. In total, 32.8% of the studied strains harbored 195 single or multiple mutations in the MHR, the majority of which were located at the first loop of the "a determinant" domain. The ayw2 subtype showed a significant effect on the ELISA signal/cut-off value and carried fewer mutations in the MHR. Nonsynonymous/synonymous substitution value indicated that negative selection was the dominant evolutionary force in the HBV S gene. This nationwide study revealed that mutation frequency of HBsAg among Iranian blood donors was much higher than previous reports from the different local regions. These findings regarding the significant differences in reactivity of ELISA among different subtypes of HBV and its correlation with the number of mutations at the MHR will be valuable to public health authorities.
Fecal contamination of drinking water is a major health problem which accounts for many cases of diarrhea mainly in infants and foreigners. This contamination is a complex interaction of many parameters. Antibiotic resistance among bacterial isolates complicates the problem. The study was done to identify fecal contamination of drinking water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig city and to trace reasons for such contamination, three hundred potable water samples were investigated for E. coli existence. Locations of E. coli positive samples were investigated in relation to population density, water source, and type of water pipe. Sixteen E. coli strains were isolated. Antibiotic sensitivity was done and enterotoxigenic, enteropathogenic, and enterohaemorrhagic virulence genes were investigated by PCR. Probability of fecal contamination correlated with higher population density, with increased distance from Zagazig water plant, and with asbestos cement water pipes. Resistance to at least one antimicrobial drug was found in all isolates. Virulence genes were detected in a rate of 26.27%, 13.13%, 20%, 6.67%, and 33.33% for LT, ST, stx1, stx2, and eae genes, respectively. This relatively high frequency of fecal contamination points towards the high risk of developing diarrhea by antibiotic resistant DEC in low socioeconomic communities particularly with old fashion distribution systems.
Carbapenem-resistant Gram-negative bacilli resulting from β-lactamases have been reported to be an important cause of nosocomial infections and are a critical therapeutic problem worldwide. This study aimed to describe the prevalence of imipenem-resistant Gram-negative bacilli isolates and detection of bla VIM, bla TEM, bla SHV, bla CTX-M-1, and bla CTX-M-9 genes in these clinical isolates in Egyptian hospitals. The isolates were collected from various clinical samples, identified by conventional methods and confirmed by API 20E. Antibiotic susceptibility testing was determined by Kirby-Bauer technique and interpreted according to CLSI. Production of bla VIM, bla TEM, bla SHV, and bla CTX-M genes was done by polymerase chain reaction (PCR). Direct sequencing from PCR products was subsequently carried out to identify and confirm these β-lactamases genes. Out of 65 isolates, (46.1%) Escherichia coli, (26.2%) Klebsiella pneumoniae, and (10.7%) Pseudomonas aeruginosa were identified as the commonest Gram-negative bacilli. 33(50.8%) were imipenem-resistant isolates. 22 isolates (66.7%) carried bla VIM, 24(72.7%) had bla TEM, and 5(15%) showed bla SHV, while 12(36%), 6(18.2%), and 0(0.00%) harbored bla CTX-M-1, bla CTX-M-9, and bla CTX-M-8/25, respectively. There is a high occurrence of β-lactamase genes in clinical isolates and sequence analysis of amplified genes showed differences between multiple SNPs (single nucleotide polymorphism) sites in the same gene among local isolates in relation to published sequences.
Background: Nasopharyngeal carcinoma (NPC) is the most common cancer arising from the nasopharynx with a poor prognosis. Targeting immune checkpoint is one of the new promising lines in cancer treatment. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-ligand 1 (PD-L1) are immune checkpoints that regulate T-cell immune function.Aim: This work aimed to assess the immunohistochemical expression of PD-L1 and CTLA-4 in NPC and their ability to predict survival and response therapy and to check their validity as immunotherapy targets. Twenty-six cases of NPC were studied by immunohistochemistry for PD-L1 and CTLA-4 and by nested polymerase chain reaction followed by DNA sequencing for the presence of EBNA-1 gene of Epstein-Barr virus (EBV). All investigated cases were diagnosed and treated in the Zagazig University Hospital in the period from August 2015 to July 2018. EBNA-1 gene was identified in 84.6% of the cases. Whereas the expression of PD-L1 was noted in 46.2% of all cases studied, 54.6% of EBV-associated NPCs were found to express PD-L1. There was a significant association between PD-L1 expression and the advanced stage of the tumor (P < 0.001). CTLA-4 expression was observed in 88.4% of all NPC cases as cytoplasmic staining in both tumor cells and tumor-infiltrating lymphocytes. CTLA-4 expression in lymphocytes was associated with the presence of EBV. A significant association was detected between CTLA-4 and tumor-infiltrating lymphocyte expression on one side and the stage of the tumor on the other. High expression of CTLA-4 was significantly associated with disease progression and worse overall survival.Conclusion: PD-L1 and CTLA-4 are adverse prognostic markers in NPC. The authors propose that targeted therapy against PD-L1 and CTLA-4 will be a hopeful therapy for cases of NPC with resistance to concurrent chemoradiation treatment in Egypt, especially EBV-associated cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.