Toxoplasmosis is a cosmopolitan zoonotic infection, caused by a unicellular protozoan parasite known as Toxoplasma gondii that belongs to the phylum Apicomplexa. It is estimated that over one-third of the world's population has been exposed and are latently infected with the parasite. In humans, toxoplasmosis is predominantly asymptomatic in immunocompetent persons, while among immunocompromised individuals may be cause severe and progressive complications with poor prognosis. Moreover, seronegative pregnant mothers are other risk groups for acquiring the infection. The life cycle of T. gondii is very complex, indicating the presence of a plurality of antigenic epitopes. Despite of great advances, recognize and construct novel vaccines for prevent and control of toxoplasmosis in both humans and animals is still remains a great challenge for researchers to select potential protein sequences as the ideal antigens. Notably, in several past years, constant efforts of researchers have made considerable advances to elucidate the different aspects of the cell and molecular biology of T. gondii mainly on microneme antigens, dense granule antigens, surface antigens, and rhoptry proteins (ROP). These attempts thereby provided great impetus to the present focus on vaccine development, according to the defined subcellular components of the parasite. Although, currently there is no commercial vaccine for use in humans. Among the main identified T. gondii antigens, ROPs appear as a putative vaccine candidate that are vital for invasion procedure as well as survival within host cells. Overall, it is estimated that they occupy about 1%–30% of the total parasite cell volume. In this review, we have summarized the recent progress of ROP-based vaccine development through various strategies from DNA vaccines, epitope or multi epitope-based vaccines, recombinant protein vaccines to vaccines based on live-attenuated vectors and prime-boost strategies in different mouse models.
BackgroundHepatitis B virus is one of the most important blood born viruses. Although the sensitivity of screening tests has been considerably increased, transmission may still occur due to window period or occult hepatitis B infections (OBIs). This study was aimed at evaluating the prevalence of the anti-HBc and identifying the HBV DNA in HBsAg negative blood donors.MethodsThe Blood samples from 2031 HBsAg-negative blood donors were divided into three aliquots and tested for anti-HBc, anti-HBs and HBV DNA. Serologic screening including anti-HBc and anti-HBs was performed. As a confirmatory test, all positive results for anti-HBc were retested with another kit. Two positive results were considered for anti-HBc positivity. All HBsAg negative selected donations were tested by PCR assay on pooled specimens (five samples per pool), plasma samples found to be HBsAg negative but anti-HBc positive were selected for a single-unit specimen Real-Time assay.ResultsThe study population had a mean age of 33.25 ± 10.09 years were mainly composed of males (94.8 %). The seroprevalance rate was 4.9 % for Anti-HBc and 31.9 % for HBsAb. The majority (58.6 %) of Anti-HBc positive cases were regular blood donors with 42–49 years being the largest age group (41.4 %). Neither individual NAT nor pooled NAT test detected any HBV DNA.ConclusionHowever, Screening of anti-HBc Ab is proposed as a method to identify previous contact with HBV, but there is controversy in literature data regarding the cost-benefit of exclusion of positive anti-HBc Ab in blood donors. Our data does not suggest HBc-Ab test as a screening tool in the study setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.