Traditional continuous-time filters are of integer order. However, using fractional calculus, filters may also be represented by the more general fractional-order differential equations in which case integer-order filters are only a tight subset of fractional-order filters. In this work, we show that low-pass, high-pass, band-pass, and all-pass filters can be realized with circuits incorporating a single fractance device. We derive expressions for the pole frequencies, the quality factor, the right-phase frequencies, and the half-power frequencies. Examples of fractional passive filters supported by numerical and PSpice simulations are given.
This work is aimed at generalizing the design of continuous-time second-order filters to the non-integer-order (fractional-order) domain. In particular, we consider here the case where a filter is constructed using two fractional-order capacitors both of the same order α. A fractional-order capacitor is one whose impedance is Zc = 1/C(jω)α, C is the capacitance and α (0 < α ≤ 1) is its order. We generalize the design equations for low-pass, high-pass, band-pass, all-pass and notch filters with stability constraints considered. Several practical active filter design examples are then illustrated supported with numerical and PSpice simulations. Further, we show for the first time experimental results using the fractional capacitive probe described in Ref. 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.