Possible improvement of the performance characteristics, reliability and selectivity of solid-contact nitrate ion-selective electrodes (ISE) (SC/NO3−-ISE) is attained by the application of a nitron-nitrate (Nit+/NO3−) ion association complex and inserting multi-walled carbon nanotubes (MWCNTs) as an ion-to-electron transducer between the ion sensing membrane (ISM) and the electronic conductor glassy carbon (GC) substrate. The potentiometric performance of the proposed electrode revealed a Nernstian slope −55.1 ± 2.1 (r² = 0.997) mV/decade in the range from 8.0 × 10−8–1 × 10−2 M with a detection limit of 2.8 × 10−8 (1.7 ng/mL). Selectivity, repeatability and reproducibility of the proposed sensors were considerably improved as compared to the coated disc electrode (GC/NO3−-ISE) without insertion of a MWCNT layer. Short-term potential stability and capacitance of the proposed sensors were tested using a current-reversal chronopotentiometric technique. The potential drift in presence of a MWCNT layer decreased from 167 μVs−1 (i.e., in absence of MWCNTs) to 16.6 μVs−1. In addition, the capacitance was enhanced from 5.99 μF (in absence of MWCNTs) to 60.3 μF (in the presence of MWCNTs). The presented electrodes were successfully applied for nitrate determination in real samples with good accuracy.
Two novel all-solid-state potentiometric sensors for the determination of azide ion are prepared and described here for the first time. The sensors are based on the use of iron II-phthalocyanine (Fe-PC) neutral carrier complex and nitron-azide ion-pair complex (Nit-N3−) as active recognition selective receptors, tetradodecylammonium tetrakis(4-chlorophenyl) borate (ETH 500) as lipophilic cationic additives and poly(octylthiophene) (POT) as the solid contact material on carbon screen-printed devices made from a ceramic substrate. The solid-contact material (POT) is placed on a carbon substrate (2 mm diameter) by drop-casting, followed, after drying, by coating with a plasticized PVC membrane containing the recognition sensing complexes. Over the pH range 6-9, the sensors display fast (< 10 s), linear potentiometric response for 1.0 × 10−2–1.0 × 10−7 M azide with low detection limit of 1.0 × 10−7 and 7.7 × 10−8 M (i.e., 6.2–4.8 ng/ml) for Fe-PC/POT/and Nit-N3−/POT based sensors, respectively. The high potential stability and sensitivity of the proposed sensors are confirmed by electrochemical impedance spectroscopy (EIS) and constant-current chronopotentiometry measurement techniques. Strong membrane adhesion and absence of delamination of the membrane, due to possible formation of a water film between the recognition membranes and the electron conductor are also verified. The proposed sensors are successfully applied for azide quantification in synthetic primer mixture samples. Advantages offered by these sensors are the robustness, ease of fabrication, simple operation, stable potential response, high selectivity, good sensitivity and low cost.
Herein, we present reliable, robust, stable, and cost-effective solid-contact ion-selective electrodes (ISEs) for perchlorate determination. Single-walled carbon nanotubes (SWCNTs) were used as solid-contact material and indium (III) 5, 10, 15, 20-(tetraphenyl) porphyrin chloride (InIII-porph) as an ion carrier. The sensor exhibited an improved sensitivity towards ClO4− ions with anionic slope of −56.0 ± 1.1 (R2 = 0.9998) mV/decade over a linear range 1.07 × 10−6 – 1.0 × 10−2 M and detection limit of 1.8 × 10−7 M. The short-term potential stability and the double-layer capacitance were measured by chronopotentiometric and electrochemical impedance spectroscopy (EIS) measurements, respectively. The sensor is used for ClO4− determination in fireworks and propellant powders. The results fairly agree with data obtained by ion chromatography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.