Background
The advances of hyperspectral technology provide a new analytic means to decrease the gap of phenomics and genomics caused by the fast development of plant genomics with the next generation sequencing technology. Through hyperspectral technology, it is possible to phenotype the biochemical attributes of rice seeds and use the data for GWAS.
Results
The results of correlation analysis indicated that Normalized Difference Spectral Index (NDSI) had high correlation with protein content (PC) with R
NDSI
2
= 0.68. Based on GWAS analysis using all the traits, NDSI was able to identify the same SNP loci as rice protein content that was measured by traditional methods. In total, hyperspectral trait NDSI identified all the 43 genes that were identified by biochemical trait PC. NDSI identified 1 extra SNP marker on chromosome 1, which annotated extra 22 genes that were not identified by PC. Kegg annotation results showed that traits NDSI annotated 3 pathways that are exactly the same as PC. The cysteine and methionine metabolic pathway identified by both NDSI and PC was reported important for biosynthesis and metabolism of some of amino acids/protein in rice seeds.
Conclusion
This study combined hyperspectral technology and GWAS analysis to dissect PC of rice seeds, which was high throughput and proven to be able to apply to GWAS as a new phenotyping tool. It provided a new means to phenotype one of the important biochemical traits for the determination of rice quality that could be used for genetic studies.
Electronic supplementary material
The online version of this article (10.1186/s13007-019-0432-x) contains supplementary material, which is available to authorized users.
INTRODUCTION Lung cancer is the leading cause of cancer deaths worldwide. Human lung cancers are classified into two major histologic types, small-cell lung cancer and nonsmall-cell lung cancer (NSCLC), the latter comprising several subtypes. Previously, lung squamous cell carcinoma was the predominant form of NSCLC, but in the last few decades it has been replaced by lung adenocarcinoma (LUAD). Moreover, LUAD is the most common type of lung cancer in women, non-smokers, and young people [1]. Epigenetic changes in tumor tissue are involved in the pathogenesis of cancer. DNA methylation is a wellstudied epigenetic alteration in cancer, owing in part to www.aging-us.com
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.