Global overpopulation, industrial expansion, and urbanization have generated massive amounts of wastes. This is considered as a significant worldwide challenge that requires an urgent solution. Additionally, remarkable advances in the field of biomedicine have impacted the entire spectrum of healthcare and medicine. This has paved the way for further refining of the outcomes of biomedical strategies toward early detection and treatment of different diseases. Various nanomaterials (NMs) have been dedicated to different biomedical applications including drug delivery, vaccinations, imaging modalities, and biosensors. However, toxicity is still the main factor restricting their use. NMs recycled from different types of wastes present a pioneering approach to not only avoid hazardous effects on the environment, but to also implement circular economy practices, which are crucial to attain sustainable growth. Moreover, recycled NMs have been utilized as a safe, yet revolutionary alternative with outstanding potential for many biomedical applications. This review focuses on waste recycled NMs, their synthesis, properties, and their potential for multiple biomedical applications with special emphasis on their role in the early detection and control of multiple diseases. Their pivotal therapeutic actions as antimicrobial, anticancer, antioxidant nanodrugs, and vaccines will also be outlined. The ongoing advancements in the design of recycled NMs are expanding their diagnostic and therapeutic roles for diverse biomedical applications in the era of precision medicine.
Addition of an to local anesthetics improves the quality of nerve block and reduces the need for postoperative intake. The study was aimed to compare the efficiency of versus as to local mixture in plexus block. The study included 45 patients scheduled for ambulatory upper extremities operations under the plexus block. The patients were allocated to three equal groups (n=15): (i) Group C: patients received 30 of local anesthetics ( 0.5% + 2% 1:1 mixture) + 2 ml normal saline. (ii) Group D: patients received 30 volume of local anesthetics ( 0.5% + 2% 1:1 mixture) + 8 mg 0.4% (2 ). (iii) Group N: patients received 30 of ( 0.5% + 2% 1:1 mixture) +10 mg (completed to 2 with normal saline). We compared the duration of postoperative analgesia, total consumption, and complications in the first 24 hours. Statistically significant prolongation in the duration of analgesia was noticed in group D and group N with the least consumption in group N. Addition of or to / mixture can prolong the duration of analgesia and reduce consumption after plexus block.
Jatropha integerrima Jacq., family: Euphorbiaceae, is used in India and subtropical Africa to treat different skin conditions. In this study we evaluated the anti-inflammatory activity of J. integerrima leaves extract (JILE) using rat paw edema model. The extract was administered orally (200 and 400 mg/kg) or applied topically as creams at 2.5, 5, and 10% strength. Four hours post-treatment, maximum reduction of edema volume by 63.09% was observed after oral administration of JILE (400 mg/kg) as compared to indomethacin with 60.43%. The extract anti-inflammatory effect was accompanied by a decrease in NO, prostaglandin PGE2, TNF-a and PKC levels by 19, 29.35, 16.9, and 47.83%, respectively. Additionally, topical applications of JILE showed dose dependent reduction in paw edema and resulted in normalized levels of PGE2, TNF-a, and PKC when used as 10% cream. Signs of inflammations were reduced or absent from paw tissue of animals receiving JILE either orally or topically. Finally, liquid chromatography/mass spectrometry analysis of JILE resulted in the annotation of 133 metabolites including 24 diterpenoids, 19 flavonoids, 10 phenolic acid conjugates, 8 cyclic peptides, 6 phytosterols, 4 sesquiterpenes, and 4 coumarins. Several of the annotated metabolites have known anti-inflammatory activity including vitexin, isovitexin, fraxitin, scopeltin, stigmasterol, and many diterpenoidal derivatives.
Two-dimensional carbon nanomaterials have been commonly employed in the field of biosensors to improve their sensitivity/limits of detection and shorten the analysis time. These nanomaterials act as efficient transducers because of their unique characteristics, such as high surface area and optical, electrical, and magnetic properties, which in turn have been exploited to create simple, quick, and low-cost biosensing platforms. In this review, graphene and two-dimensional carbon material-based fluorescent biosensors are covered between 2010 and 2021, for the detection of different human viruses. This review specifically focuses on the new developments in graphene and two-dimensional carbon nanomaterials for fluorescent biosensing based on the Förster resonance energy transfer (FRET) mechanism. The high-efficiency quenching capability of graphene via the FRET mechanism enhances the fluorescent-based biosensors. The review provides a comprehensive reference for the different types of carbon nanomaterials employed for the detection of viruses such as Rotavirus, Ebola virus, Influenza virus H3N2, HIV, Hepatitis C virus (HCV), and Hepatitis B virus (HBV). This review covers the various multiplexing detection technologies as a new direction in the development of biosensing platforms for virus detection. At the end of the review, the different challenges in the use of fluorescent biosensors, as well as some insights into how to overcome them, are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.