X-ray micro-tomography combined with a high-pressure high-temperature flow apparatus and advanced image analysis techniques were used to image and study fluid distribution, wetting states and oil recovery during low salinity waterflooding (LSW) in a complex carbonate rock at subsurface conditions. The sample, aged with crude oil, was flooded with low salinity brine with a series of increasing flow rates, eventually recovering 85% of the oil initially in place in the resolved porosity. The pore and throat occupancy analysis revealed a change in fluid distribution in the pore space for different injection rates. Low salinity brine initially invaded large pores, consistent with displacement in an oil-wet rock. However, as more brine was injected, a redistribution of fluids was observed; smaller pores and throats were invaded by brine and the displaced oil moved into larger pore elements. Furthermore, in situ contact angles and curvatures of oil–brine interfaces were measured to characterize wettability changes within the pore space and calculate capillary pressure. Contact angles, mean curvatures and capillary pressures all showed a shift from weakly oil-wet towards a mixed-wet state as more pore volumes of low salinity brine were injected into the sample. Overall, this study establishes a methodology to characterize and quantify wettability changes at the pore scale which appears to be the dominant mechanism for oil recovery by LSW.
We use synchrotron X-ray micro-tomography to investigate the displacement dynamics during three-phase—oil, water and gas—flow in a hydrophobic porous medium. We observe a distinct gas invasion pattern, where gas progresses through the pore space in the form of disconnected clusters mediated by double and multiple displacement events. Gas advances in a process we name three-phase Haines jumps, during which gas re-arranges its configuration in the pore space, retracting from some regions to enable the rapid filling of multiple pores. The gas retraction leads to a permanent disconnection of gas ganglia, which do not reconnect as gas injection proceeds. We observe,
in situ
, the direct displacement of oil and water by gas as well as gas–oil–water double displacement. The use of local
in situ
measurements and an energy balance approach to determine fluid–fluid contact angles alongside the quantification of capillary pressures and pore occupancy indicate that the wettability order is oil–gas–water from most to least wetting. Furthermore, quantifying the evolution of Minkowski functionals implied well-connected oil and water, while the gas connectivity decreased as gas was broken up into discrete clusters during injection. This work can be used to design CO
2
storage, improved oil recovery and microfluidic devices.
We use high‐resolution three‐dimensional X‐ray microtomography to investigate fluid displacement during steady‐state three‐phase flow in a cm‐sized water‐wet sandstone rock sample. The pressure differential across the sample is measured which enables the determination of relative permeability; capillary pressure is also estimated from the interfacial curvature. Though the measured relative permeabilities are consistent, to within experimental uncertainty, with values obtained without imaging on larger samples, we discover a unique flow dynamics. The most non‐wetting phase (gas) is disconnected across the system: gas flows by periodically opening critical flow pathways in intermediate‐sized pores. While this phenomenon has been observed in two‐phase flow, here it is significant at low flow rates, where capillary forces dominate at the pore‐scale. Gas movement proceeds in a series of double and multiple displacement events. Implications for the design of three‐phase flow processes and current empirical models are discussed: the traditional conceptualization of three‐phase dynamics based on analogies to two‐phase flow vastly over‐estimates the connectivity and flow potential of the gas phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.