In this paper, we propose a new power generating circuit for passive ultra high frequency (UHF) RFID tag. The proposed power generating circuit consists of a RF limiter, a high power efficiency and high sensitivity full wave radio frequency (RF) wave rectifier and a low-power regulator with NMOS diodes work like a DC-limiter. The design method proposed in this study use one low drop out (LDO) regulator to provide tow output stable supply voltages vdd1 of value 1V for the digital section supply, and vdd2 of value 0.5V for the analog front-end section power supply. The proposed power generating circuit is optimized in terms of power consumption of RFID tag system to have a high operating range under conditions of 50 Ohm antenna, -24 dBm input RF power, 900MHz and 1 M DC, with low power dissipation and 29.15% large power conversion efficiency. The power generating circuit was designed, simulated and layouted in Cadence using TSMC 180 nm technology. The final design occupies approximately 0.25mm<sup>2</sup>.
Purpose-To explain in detail the service for document supply offered by FIZ Karlsruhe, the options available for its customisation and the interfaces that facilitate its integration into corporate intranets and web portals. Approach-Descriptive. Value-A description of a system that is distinguished by its fl exibility in the modern and complex document supply environment.
<p>In this work a 2 MHz on-off keying (OOK) transmitter/receiver for inductive power and data transmission for biomedical implant system is presented. Inductive link, driven by a Class E power amplifier (PA) is the most PA used to transfer data and power to the internal part of biomedical implant system. Proposed transmitter consists of a digital control oscillator (DCO) and a class E PA which uses OOK modulation to transfer both data and power to a biomedical implant. In proposing OOK transmitter when the transmitter sends binary value “0” the DCO and PA are turned off. With this architecture and 2 MHz carrier wave we have implemented a wireless data and power transfer link which can transmit data with data rate 1Mbps and bit error rate (BER) of 10-5. The efficiency of power transfer is 42% with a 12.7 uH transmitter coil and a 2.4 uH receiver coil and the power delivered to the load is about 104.7 mW. Proposed transmitter is designed for output power 4.1V. OOK receiver consists of an OOK demodulator, powered by rectified and regulated 5V p-p RF signal across the receiver coil. The supply voltage of proposed voltage regulator is 5 V with 9mV/V line regulation of. All circuits proposed in this paper were designed and simulated using Cadence in 0.18 um CMOS process.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.