The coastline is one of the country's most important environmental and economic resources. However, it is a delicate and highly coveted environment on which many factors of evolution interact, both anthropogenic and natural. This work is concerned with the diachronic study of the coastline of the Mediterranean coast, particularly the coastal fringe at the level of Tangier Bay. In order to experimentally confirm the numerical models used and to take part in the development of an accurate, reliable and rapid decision support system for the assessment and remediation of the risks of accretion and coastal erosion, the methodology followed consists of the application of automatic analytical techniques, based on a geomatics approach, using a multi-temporal photo-interpretation, a Geographical Information System (GIS) and a computerized data analysis system (DSAS: Digital Shoreline Analysis System). The change rate will be calculated from the multi-date maps (1981-96 and 2017) using the End Point Rate (EPR). To achieve our objective, the study area was divided into three sectors from East to West: El Ghandouri Beach, Malabata Beach and the municipal square adjacent to the port. The GIS analysis of the data obtained shows that the coastline is present by location and for the three periods of comparison of the remarkable zones of erosion and sedimentation.
This application on the Laou watershed represents the first part of study results that concerns the development of a model for mapping soil susceptibility at a regional scale in northern Morocco using spatial databases and geographic information systems (GIS). The model uses qualitative decision rules and hierarchical organization of data represented by different thematic maps. Those laters are derived from input erosion parameters which are coded according to their sensitivity to water erosion. Superposing effect of several layers: geology, geomorphology, land use and topography, allows we the obtaining of a qualitative map showing the potential sensitivity to erosion per unit area. The obtained map shows that severe erosion affects the Southern and North-western sectors of the basin, even if they present the least erodible lands of all the basin and have, as well, a relatively dense plant cover. It may be concluded that both high gradient and damaged terrain state represent the main factors of water erosion in the Laou watershed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.