We compare the powers of three methods for the QTL analysis of non-normally distributed traits. We describe the nonparametric and the logistic regression approaches recently proposed in the literature and study the properties of the standard regression interval mapping method when the trait is not normally distributed. It is shown that the standard approach is robust against nonnormality and behaves quite well for both continuous and discrete characters. The loss of power compared with the nonparametric or the logistic approach is generally minor. Moreover, the least squares estimation procedure of the regression interval mapping is not affected by departure from normality. The use of other approaches could be restricted to extreme cases where the trait distribution is very skewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.