Highly crystalline zinc oxide (ZnO) nanowires (NWs) were synthesized through chemical bath deposition (CBD) method by using a simple seeding technique. The process includes dispersion of commercially available ZnO nanoparticles through spraying on a desired substrate prior to the CBD growth. A typical growth period of 16 h produced ZnO NW assemblies with an average diameter of ∼45 nm and lengths of 1–1.3 μm, with an optical band gap of ∼3.61 eV. The as-prepared ZnO NWs were photoactive under ultra violet (UV) illumination. Photodetector devices fabricated using these NW assemblies demonstrated a high photoresponse factor of ∼40 and 120 at room temperature under moderate UV illumination power of ∼250 μW/cm2. These findings indicate the possibility of using ZnO NWs, grown using the simple method discussed in this paper, for various opto-electronic applications.
Zinc oxide (ZnO) nanorod thin films were prepared by CBD onto glass and FTO/glass substrates. Silver (Ag) nanoparticles were synthesized on the surface of the prepared ZnO nanorod thin films using electrochemical methods. The scanning electron microscopy images of the Ag/ZnO/glass core/shell nanostructure confirmed that the average particles size is 20 nm while it was 41 nm for Ag NPs that synthesized onto ZnO/FTO NRs. The photocatalytic activity of the prepared Ag/ZnO core/shell nanostructure was studied by analyzing the degradation of methylene blue (MB) dye under visible light. Various pH values (6 and 10) and exposure time (30–240) min were controlled to investigate the photocatalytic activity of as-prepared Ag/ZnO core/shell nanostructure and that annealed at 200 °C and 300 °C for 1 h. It was observed that when the pH was 6, the degradation rate increased with the annealing temperature and irradiation time reaching 51% at the annealing temperature of 300 °C and exposure time of 240 min. In other hands, when the pH was 10, and the sample was annealed at 200 °C, it showed a good degradation rate of 100% at the irradiation time of 90 min. By contrast, the sample annealed at 300 °C required 180 min to degrade the MB dye completely. The photoelectrochemical cell measurement based on photocurrent density revealed a slight response to light. Cycle voltammetry (CV) measurement was conducted, and the CV curves of the Ag/ZnO core/shell electrodes indicated nonfaradaic and pseudocapacitance behavior. The electrodes showed nearly rectangular CV curves, which indicated the dominance of the nonfaradaic capacitance behavior. The specific capacitance of the electrodes remained at approximately 99%. Mott–Schottky analysis revealed that the semiconductor was an n-type with dependence on flat band potential V
FB deviation in the negative direction.
Carbon nanotube/metal oxide based hybrids are envisioned as high performance electrochemical energy storage electrodes since these systems can provide improved performances utilizing an electric double layer coupled with fast faradaic pseudocapacitive charge storage mechanisms. In this work, we show that high performance supercapacitor electrodes with a specific capacitance of ~192 F/g along with a maximum energy density of ~3.8 W h/kg and a power density of ~28 kW/ kg can be achieved by synthesizing zinc oxide nanowires (ZnO NWs) directly on top of aligned multiwalled carbon nanotubes (MWCNTs). In comparison to pristine MWCNTs, these constitute a 12-fold of increase in specific capacitance as well as corresponding power and energy density values. These electrodes also possess high cycling stability and were able to retain ~99% of their specific capacitance value over 2000 charging discharging cycles. These findings indicate potential use of a MWCNT/ZnO NW hybrid material for future electrochemical energy storage applications
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.