This study compares between different selenium forms (sodium selenite; SeS, selenomethionine; Met-Se or nano-Se) and levels on growth performance, Se retention, antioxidative potential of fresh and frozen meat, and genes related to oxidative stress in Ross broilers. Birds (n = 450) were randomly divided into nine experimental groups with five replicates in each and were fed diets supplemented with 0.3, 0.45, and 0.6 mg Se/kg as (SeS, Met-Se), or nano-Se. For overall growth performance, dietary inclusion of Met-Se or nano-Se significantly increased (p < 0.05) body weight gain and improved the feed conversion ratio of Ross broiler chicks at the level of 0.45 and 0.6 mg/kg when compared with the group fed the same level of SeS. Se sources and levels significantly affected (p < 0.05) its concentrations in breast muscle, liver, and serum. Moreover, Se retention in muscle was higher (p < 0.05) after feeding of broiler chicks on a diet supplemented with Met-Se or nano-Se compared to the SeS group, especially at 0.6 mg/kg. Additionally, higher dietary levels from Met-Se or nano-Se significantly reduced oxidative changes in breast and thigh meat in the fresh state and after a four-week storage period and increased muscular pH after 24 h of slaughter. Also, broiler’s meat in the Met-Se and nano-Se groups showed cooking loss and lower drip compared to the SeS group (p < 0.05). In the liver, the mRNA expression levels of glutathione peroxidase, superoxide dismutase, and catalase were elevated by increasing dietary Se levels from Met-Se and nano-Se groups up to 0.6 mg/kg when compared with SeS. Therefore, dietary supplementation with 0.6 mg/kg Met-Se and nano-Se improved growth performance and were more efficiently retained than with SeS. Both sources of selenium (Met-Se and nano-Se) downregulated the oxidation processes of meat during the first four weeks of frozen storage, especially in thigh meat, compared with an inorganic source. Finally, dietary supplementation of Met-Se and nano-Se produced acceptable Se levels in chicken meat offered for consumers.
Acquired tumor resistance to cancer therapies poses major challenges in the treatment of cancers including melanoma. Among several signaling pathways or factors that affect neocarcinogenesis, cancer progression, and therapies, altered microRNAs (miRNAs) expression has been identified as a crucial player in modulating the key pathways governing these events. While studies in the miRNA field have grown exponentially in the last decade, much remains to be discovered, particularly with respect to their roles in cancer therapies. Since immune and nonimmune signaling cascades prevail in cancers, identification and evaluation of miRNAs, their molecular mechanisms and cellular targets involved in the underlying development of cancers, and acquired therapeutic resistance would help in devising new strategies for the prognosis, treatment, and an early detection of recurrence. Importantly, in-depth validation of miRNA-targeted molecular events could lead to the development of accurate progression-risk biomarkers, improved effectiveness, and improved patient responses to standard therapies. The current review focuses on the roles of miRNAs with recent updates on regulated cell cycle and proliferation, immune responses, oncogenic/epigenetic signaling pathways, invasion, metastasis, and apoptosis, with broader attention paid to melanomagenesis and melanoma therapies.
Salmonella enterica serovar Typhimurium (S. typhimurium) is known for its intracellular survival, evading the robust inflammation and adaptive immune response of the host. The emergence of decreased ciprofloxacin (CIP) susceptibility (DCS) requires a prolonged antibiotic course with increased dosage, leading to threatening, adverse effects. Moreover, antibiotic-resistant bacteria can persist in biofilms, causing serious diseases. Hence, we validated the in vitro and in vivo efficacy of ciprofloxacin-loaded mesoporous silica nanoparticles (CIP–MSN) using a rat model of salmonella infection to compare the oral efficacy of 5 mg/kg body weight CIP–MSN and a traditional treatment regimen with 10 mg/kg CIP postinfection. Our results revealed that mesoporous silica particles can regulate the release rate of CIP with an MIC of 0.03125 mg/L against DCS S. typhimurium with a greater than 50% reduction of biofilm formation without significantly affecting the viable cells residing within the biofilm, and a sub-inhibitory concentration of CIP–MSN significantly reduced invA and FimA gene expressions. Furthermore, oral supplementation of CIP–MSN had an insignificant effect on all blood parameter values as well as on liver and kidney function parameters. MPO and NO activities that are key mediators of oxidative stress were abolished by CIP–MSN supplementation. Additionally, CIP–MSN supplementation has a promising role in attenuating the elevated secretion of pro-inflammatory cytokines and chemokines in serum from S. typhimurium-infected rats with a reduction in pro-apoptotic gene expression, resulting in reduced S. typhimurium-induced hepatic apoptosis. This counteracted the negative effects of the S. typhimurium challenge, as seen in a corrected histopathological picture of both the intestine and liver, along with increased bacterial clearance. We concluded that, compared with a normal ciprofloxacin treatment regime, MSN particles loaded with a half-dose of ciprofloxacin exhibited controlled release of the antibiotic, which can prolong the antibacterial effect.
Pumpkin seed oil has long been considered as an ingredient for its nutritional and medicinal values for the prevention of various ailments, especially for prostate diseases. In addition, several studies have suggested the crucial roles and effectiveness of pumpkin seed oil in the treatment of diabetes, anxiety and even cancer. Pumpkin seed oil is being used in several countries worldwide including North America, Mexico, India and China. This review highlights the characterization, properties and use of pumpkin seed oil from various pumpkin species against several diseases pathophysiologies. We strongly believe that this review will provide overall insights to the chemists, biologists and researchers on the roles of pumpkin seed oil extracts that possess promising biological activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.