To date, there is no final FDA-approved treatment for COVID-19. There are thousands of studies published on the available treatments for COVID-19 virus in the past year. Therefore, it is crucial to synthesize and summarize the evidence from published studies on the safety and efficacy of experimental treatments of COVID-19. We conducted a systematic literature search of MEDLINE, PubMed, Cochrane Library, GHL, OpenGrey, ICTRP, and ClinicalTrials.gov databases through April 2020. We obtained 2699 studies from the initial literature search. Of them, we included 28 eligible studies that met our eligibility criteria. The sample size of the included studies is 2079 individuals. We extracted and pooled the available data and conducted a quality assessment for the eligible studies. From the 28 studies, only 13 studies provide strong evidence. Our results showed that Favipiravir and Hydroxycholoroquine shorten viral clearance and clinical recovery time and promote pneumonia absorption. On the other hand, Lopinavir-ritonavir either alone or combined with arbidol or interferons has no significant difference superior to the standard care. Corticosteroids, Convalescent plasma transfusion, and anticoagulant therapies provide a better prognosis. Remedsivir, Tocilizumab, Immunoglobulin, Mesenchymal stem cell transplantation showed effective treatment results, but further confirmatory studies are needed. In conclusion, Favipiravir and Remedsivir might be promising drugs in the treatment of COVID-19 patients.
: Coronavirus Disease (COVID-19) pandemic has affected more than seven million individuals in 213 countries worldwide with a basic reproduction number ranging from 1.5 to 3.5 and an estimated case fatality rate ranging from 2% to 7%. A substantial proportion of COVID-19 patients are asymptomatic; however, symptomatic cases might present with fever, cough, and dyspnoea or severe symptoms up to acute respiratory distress syndrome. Currently, RNA RT-PCR is the screening tool, while bilateral chest CT is the confirmatory clinical diagnostic test. Several drugs have been repurposed to treat COVID-19, including chloroquine or hydroxychloroquine with or without azithromycin, lopinavir/ritonavir combination, remdesivir, favipiravir, tocilizumab, and EIDD-1931. Recently, Remdesivir gained FDA emergency approval based on promising early findings from the interim analysis of 1063 patients. The recently developed serology testing for SARSCoV-2 antibodies opened the door to evaluate the actual burden of the disease and to determine the rate of the population who have been previously infected (or developed immunity). This review article summarizes current data on the COVID-19 pandemic starting from the early outbreak, viral structure and origin, pathogenesis, diagnosis, treatment, discharge criteria, and future research.
: Enterovirus D68 (EV-D68) is a single-stranded positive-sense RNA virus, and it is one of the family Picornaviridae. Except for EV-D68, the family Picornaviridae has been illustrated in literature. EV-D68 was first discovered and isolated in California, USA, in 1962. EV-D68 has resulted in respiratory disorders’ outbreaks among children worldwide, and it has been detected in cases of various neurological diseases such as acute flaccid myelitis (AFM). A recent study documented a higher number of EV-D68 cases associated with AFM in Europe in 2016 compared to the 2014 outbreak. EV-D68 is mainly diagnosed by quantitative PCR, and there is an affirmative strategy for EV-D68 detection by using pan-EV PCR on the untranslated region and/or the VP1 or VP2, followed by sequencing of the PCR products. Serological tests are limited due to cross-reactivity of the antigens between the different serotypes. Many antiviral drugs for EV-D68 have been evaluated, and showed promising results. In our review, we discuss the current knowledge about EV-D68 and its role in the development of AFM.
BackgroundProstate cancer (PC) incidence has risen globally. As there are no current independent biomarkers with high diagnostic efficiency to detect PC, this study was performed to investigate the relative gene expression levels of E2F3 and survivin in the whole blood of PC, benign prostate hyperplasia (BPH), and normal control individuals and to explore their diagnostic value.Material and methodsParticipants of the study were divided into three groups; normal control group (n=25), BPH patients (n=25), and PC patients (n=75). The E2F3 and survivin gene expression levels were assessed using real-time qPCR in addition to the measurement of free and total levels of prostate-specific antigen (PSA) using electrochemiluminescence assays.ResultsSurvivin relative gene expression was over-expressed in PC and BPH patients compared to the normal control group, whereas, E2F3 did not differ significantly among the studied groups. Compared to PSA, E2F3 and survivin mRNA expression levels had lower diagnostic efficacy to differentiate PC from normal and BPH individuals with an area under curve (AUC) of 0.471 and 0.727, respectively. Further, survivin expression level was associated with increased the risk of PC.ConclusionSurvivin and E2F3 relative expression levels in peripheral blood had low diagnostic performance to detect PC and individuals with high survivin expression levels may have higher risk to develop PC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.