In this paper, a nonlinear hierarchical adaptive control framework is proposed for the control of a quad tilt-wing unmanned aerial vehicle (UAV). An outer loop model reference adaptive controller with robustifying terms creates required forces to be able to move the UAV on a reference trajectory, and an inner loop nonlinear adaptive controller realizes the required attitude angles to achieve these forces. A rigorous stability analysis is provided showing the boundedness of all the signals in this cascaded controller structure. The development and the stability analysis of the controller do not use any linearizations and use the full nonlinear UAV dynamics. The controller is implemented on a high-fidelity nonlinear tilt-wing quadrotor model in the presence of uncertainties, wind disturbances, and measurement noise as well as actuator and structural failures. In this work, in addition to earlier modeling studies, the effect of wing-angle variations, actuator failures, and structural failures and their effect on the center of gravity of the UAV are rigorously and systematically investigated and reflected in the model. Simulation results showing the performance of the proposed controller and a comparison with the fixed controller used in earlier studies are presented in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.