Backscatter communication (BSC) is a promising solution for Internet-of-Things (IoT) connections due to its lowcomplexity, low-cost, and energy-efficient solution for sensors. There are several network infrastructure setups that can be used for BSC with IoT nodes/passive devices. One of them is a bistatic setup where there is a need for high dynamic range and high-resolution analog-to-digital converters at the reader side. In this paper, we investigate a bistatic BSC setup with multiple antennas. We propose a novel algorithm to suppress direct link interference between the carrier emitter (CE) and the reader using beamforming into the nullspace of the CEreader direct link to decrease the dynamic range of the system and increase the detection performance of the backscatter device (BSD). Further, we derive a Neyman-Pearson (NP) test and an exact closed-form expression for its performance in the detection of the BSD. Finally, simulation results show that the dynamic range of the system is significantly decreased and the detection performance of the BSD is increased by the proposed algorithm compared to a system not using beamforming in the CE, which could then be used in a host of different practical fields such as agriculture, transportation, factories, hospitals, smart cities, and smart homes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.