Multisystem inflammatory syndrome in children (MIS-C) is a rare condition. It is still unknown if children who have recovered from MIS-C are at a risk of recurrence of MIS-C when they are reinfected with SARS-CoV-2. In this study, we aimed to report 2 children who recovered from MIS-C and reinfected with SARS-CoV-2 without recurrence of MIS-C.
Background: Heterologous COVID-19 booster vaccination is an alternative strategy to homologous vaccination, especially in developing countries, due to shortages, delays, or unequal distribution of COVID-19 vaccines. We compared cohorts vaccinated with different vaccine combinations to investigate whether a heterologous booster dose of mRNA-based BNT162b2 vaccine boosts the immune response in individuals primed with the CoronaVac vaccine.Methods: Anti-RBD IgG is generally measured 4 weeks after primary immunization and 4 weeks after booster vaccination. Data on anti-receptor-binding domain (anti-RBD) IgG antibody titers and clinical characteristics were provided by infection control units.
Results:The highest median anti-RBD IgG antibody titers (14589 AU/mL) after primary immunization was observed in the group vaccinated with two doses of BNT162b2 vaccine. Antibody titers were lower 4 months or more after the second CoronaVac vaccine dose in CoronaVac recipients with or without previous COVID-19. In the homologous COVID-19 booster vaccine group (primed with two doses of CoronaVac 4 weeks apart and a single booster dose of CoronaVac) the median anti-RBD titers decreased from 1025 to 242 AU/mL before the booster dose. In the heterologous group (primed with two doses of CoronaVac 4 weeks apart and a single booster dose of BNT162b2), the median anti-RBD titer increased to 31624 AU/mL, a 132-fold increase, 16 days after the booster dose.
Conclusions:After the second dose of CoronaVac, protective neutralizing antibody levels decrease over time, and a booster dose is required. Heterologous COVID-19 booster vaccination with BNT162b2 is effective at boosting neutralizing antibody levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.