Aurea helianthus extract is associated with various properties including anti-melanogenesis, anti-oxidation, tumorigenic suppression, and immunoregulation; however, the mechanism by which it executes the immunomodulation of human vaginal epithelial cells (HVECs) remains elusive. We established three immunological functions of the extract. First, it mediated tumorigenic suppression in HVECs. Expression of cytokeratin 8, cancer antigen-125, and vimentin was dramatically downregulated in HVECs exposed to the extract under oxidative and fungal stresses. Second, the extract activated dendritic cells and macrophages. On exposing progenitor dendritic cells to the extract, the number of CD304+ cells increased by 40%; further, under oxidative and fungal stresses, this number was approximately 1.8 and 1.3 times lower, respectively, compared to that in the stressed cells. In monocytic differentiation, the number of dendritic cells and macrophages increased 9 and 6 times, respectively, compared to that in the control. Additionally, the extract enhanced and recovered polarisation by approximately 1.5 and 2 times, respectively, than that under stressed conditions. Third, the phagocytic activity of macrophages, against HPV16, 18, and 33 peptides, was enhanced by 12–35 times compared with that under stressed conditions. Thus, A. helianthus extract is a strong stimulator of the immune system and tumorigenic suppression under stress conditions.
Non-alcoholic fatty liver disease is caused by excessive lipid accumulation in hepatocytes. Although trans-anethole (TAO) affects hypoglycemia and has anti-immune activity and anti-obesity effects, its role in non-alcoholic fatty liver disease remains unknown. This study aimed to evaluate the effects of TAO on cellular senescence, lipid metabolism, and reinforcement of microenvironments in HepG2 cells. To analyze the lipid metabolic activity of TAO, PCR analysis, flow-cytometry, and Oil Red O staining were performed, and mitochondrial membrane potential (MMP) and cellular senescence kits were used for assessing the suppression of cellular senescence. At 2000 μg/mL TAO, the cellular viability was approximately 99%, and cell senescence decreased dose-dependently. In the results for MMP, activity increased with concentration. The levels of lipolytic genes, CPT2, ACADS, and HSL, strongly increased over 3 days and the levels of lipogenic genes, ACC1 and GPAT, were downregulated on the first day at 1000 μg/mL TAO. Consequently, it was found that TAO affects the suppression of cellular senescence, activation of lipid metabolism, and reinforcement of the microenvironment in HepG2 cells, and can be added as a useful component to functional foods to prevent fatty liver disease and cellular senescence, as well as increase the immunoactivity of the liver.
BackgroundHigh-NaCl diet is a contributing factor for cardiac hypertrophy. The role of HSP22 as a protective protein during cardiac hypertrophy due to hypernatremia is unclear. Accordingly, this study aimed to establish a cellular hypernatremic H9C2 model and to compare the expression of HSP22 in Ca2+ homeostasis between a high-NaCl and angiotensin II-induced hypertrophic cellular H9C2 model.MethodsReal-time PCR was performed to compare the mRNA expression. Flow cytometry and confocal microscopy were used to analyze the cells.ResultsThe addition of 30 mM NaCl for 48 h was the most effective condition for the induction of hypertrophic H9C2 cells (termed the in vitro hypernatremic model). Cardiac cellular hypertrophy was induced with 30 mM NaCl and 1 µM angiotensin II for 48 h, without causing abnormal morphological changes or cytotoxicity of the culture conditions. HSP22 contains a similar domain to that found in the consensus sequences of the late embryogenesis abundant protein group 3 from Artemia. The expression of HSP22 gradually decreased in the in vitro hypernatremic model. In contrast to the in vitro hypernatremic model, HSP22 increased after exposure to angiotensin II for 48 h. Intracellular Ca2+ decreased in the angiotensin II model and further decreased in the in vitro hypernatremic model. Impaired intracellular Ca2+ homeostasis was more evident in the in vitro hypernatremic model.ConclusionThe results showed that NaCl significantly decreased HSP22. Decreased HSP22, due to the hypernatremic condition, affected the Ca2+ homeostasis in the H9C2 cells. Therefore, hypernatremia induces cellular hypertrophy via impaired Ca2+ homeostasis. The additional mechanisms of HSP22 need to be explored further.
Backgrounds: Cordyceps militaris is a well-known medicinal fungus. Cordycepin, a metabolite of this fungus, has strong biological activities against leukemia, oxidative stress, aging, tumors, and inflammation. Methods: HPLC analysis was conducted to measure the content of corydycepin in the extract. Real time PCR was performed to evaluate the cytokines. Immunoactivity including the polarization, phagocytic activity and cellular differentiations were evaluated by flow cytometry. Results: The yields of cordycepin and adenosine in the extract were 11.75 µg and 1.25 µg (per gram fresh mycelium), respectively. From measurements of the bioactivity in the extract, the levels of TNF-α and IL-1β in macrophages treated with lipopolysaccharides (LPS) were found to be approximately 4 and 48 times higher than those in the control, as shown by qRT-PCR. However, cells treated with 1 µg/mL of the extract showed 13 and 10-fold lower TNF-α and IL-1β levels when compared to LPS-treated cells. This was corroborated by flow-cytometry, where their levels were 20 and 14 times lower, respectively. Addition of the extract to LPS-treated cells enhanced M2 polarization and attenuated M1 polarization. In addition, the extract also dose-dependently activated macrophage phagocytosis. Under treatment with the extract conditioned medium, DCs were strongly differentiated toward CD11b+ and Xcr1+ cells as their density were 13.6 and 6.26 times higher than those in the LPS conditioned medium, respectively. Moreover, the number of Treg and NKT cells differentiated in the extract conditioned medium were increased about 1.67 and 6.73 times than those in the LPS conditioned medium, respectively. Conclusions: These results suggest that the C. militaris hydrolytic extract has strong effects on the modulation of immune actors, such as macrophages and dendritic cells, under inflammatory stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.