DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
The conventional approach of moving data to the CPU for computation has become a significant performance bottleneck for emerging scale-out data-intensive applications due to their limited data reuse. At the same time, the advancement in 3D integration technologies has made the decade-old concept of coupling compute units close to the memory -called nearmemory computing (NMC) -more viable. Processing right at the "home" of data can significantly diminish the data movement problem of data-intensive applications.In this paper, we survey the prior art on NMC across various dimensions (architecture, applications, tools, etc.) and identify the key challenges and open issues with future research directions. We also provide a glimpse of our approach to near-memory computing that includes i) NMC specific microarchitecture independent application characterization ii) a compiler framework to offload the NMC kernels on our target NMC platform and iii) an analytical model to evaluate the potential of NMC.
In last decade, data analytics have rapidly progressed from traditional disk-based processing to modern inmemory processing. However, little effort has been devoted at enhancing performance at micro-architecture level. This paper characterizes the performance of in-memory data analytics using Apache Spark framework. We use a single node NUMA machine and identify the bottlenecks hampering the scalability of workloads. We also quantify the inefficiencies at micro-architecture level for various data analysis workloads. Through empirical evaluation, we show that spark workloads do not scale linearly beyond twelve threads, due to work time inflation and thread level load imbalance. Further, at the micro-architecture level, we observe memory bound latency to be the major cause of work time inflation.
Sheer increase in volume of data over the last decade has triggered research in cluster computing frameworks that enable web enterprises to extract big insights from big data. While Apache Spark is gaining popularity for exhibiting superior scale-out performance on the commodity machines, the impact of data volume on the performance of Spark based data analytics in scale-up configuration is not well understood. We present a deep-dive analysis of Spark based applications on a large scale-up server machine. Our analysis reveals that Spark based data analytics are DRAM bound and do not benefit by using more than 12 cores for an executor. By enlarging input data size, application performance degrades significantly due to substantial increase in wait time during I/O operations and garbage collection, despite 10 % better instruction retirement rate (due to lower L1 cache misses and higher core utilization). We match memory behaviour with the garbage collector to improve performance of applications between 1.6x to 3x. QC 20160224
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.