Utilizing solar energy requires perfect absorption of light by the photovoltaic cells, particularly solar thermophotovoltaics (STPVs), which can be eventually converted into useful electrical energy. Ultrathin nanostructures, named metasurfaces, provide an intriguing platform to develop the miniaturized solar energy absorbers that can find potential applications in integrated photonics, optical sensing, color imaging, thermal imaging and electromagnetic shielding. Therefore, the quest of novel materials and designs to develop highly efficient absorbers at minuscule scale is an open topic. In this paper, novel absorbers using tungsten-metasurface are developed which give ultrahigh absorbance over a wide frequency spectrum. The proposed designs are two-dimensional, polarization insensitive, broadband and are predicted to give better response under high temperatures ascribed to high melting point of tungsten i.e. 3422 °C. Amongst these designs, cross alignment is found optimum for tungsten, because it is impedance matched with the free space for visible spectrum. This cross arrangement is further tweaked by changing width, height and length resulting in 7 different optimized solutions giving an average absorbance greater than 98%. One, amongst these solutions, gave a maximum average absorbance of 99.3%.
The efficiency of traditional solar cells is constrained due to the Shockley-Queisser limit, to circumvent this theoretical limit, the concept of solar thermophotovoltaics (STPVs) has been introduced. The typical design...
Chiral materials, which show different optical behaviors when illuminated by left or right circularly polarized light due to broken mirror symmetry, have greatly impacted the field of optical sensing over the past decade. To improve the sensitivity of chiral sensing platforms, enhancing the chiroptical response is necessary. Metasurfaces, which are two-dimensional metamaterials consisting of periodic subwavelength artificial structures, have recently attracted significant attention because of their ability to enhance the chiroptical response by manipulating amplitude, phase, and polarization of electromagnetic fields. Here, we reviewed the fundamentals of chiroptical metasurfaces as well as categorized types of chiroptical metasurfaces by their intrinsic or extrinsic chirality. Finally, we introduced applications of chiral metasurfaces such as multiplexing metaholograms, metalenses, and sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.