The recent advent of DNA sequencing technologies facilitates the use of genome sequencing data that provide means for more informative and precise classification and identification of members of the Bacteria and Archaea. Because the current species definition is based on the comparison of genome sequences between type and other strains in a given species, building a genome database with correct taxonomic information is of paramount need to enhance our efforts in exploring prokaryotic diversity and discovering novel species as well as for routine identifications. Here we introduce an integrated database, called EzBioCloud, that holds the taxonomic hierarchy of the Bacteria and Archaea, which is represented by quality-controlled 16S rRNA gene and genome sequences. Whole-genome assemblies in the NCBI Assembly Database were screened for low quality and subjected to a composite identification bioinformatics pipeline that employs gene-based searches followed by the calculation of average nucleotide identity. As a result, the database is made of 61 700 species/phylotypes, including 13 132 with validly published names, and 62 362 whole-genome assemblies that were identified taxonomically at the genus, species and subspecies levels. Genomic properties, such as genome size and DNA G+C content, and the occurrence in human microbiome data were calculated for each genus or higher taxa. This united database of taxonomy, 16S rRNA gene and genome sequences, with accompanying bioinformatics tools, should accelerate genome-based classification and identification of members of the Bacteria and Archaea. The database and related search tools are available at www.ezbiocloud.net/.
The rapid detection of biological and chemical substances in real time is particularly important for public health and environmental monitoring and in the military sector. If the process of substance detection to visual reporting can be implemented into a single miniaturized sensor, there could be a profound impact on practical applications. Here, we propose a compact sensor platform that integrates liquid crystals (LCs) and holographic metasurfaces to autonomously sense the existence of a volatile gas and provide an immediate visual holographic alarm. By combining the advantage of the rapid responses to gases realized by LCs with the compactness of holographic metasurfaces, we develop ultracompact gas sensors without additional complex instruments or machinery to report the visual information of gas detection. To prove the applicability of the compact sensors, we demonstrate a metasurface-integrated gas sensor on safety goggles via a one-step nanocasting process that is attachable to flat, curved, and flexible surfaces.
BackgroundAstrocytes regulate neuronal function, synaptic formation and maintenance partly through secreted extracellular vesicles (EVs). In amyotrophic lateral sclerosis (ALS) astrocytes display a toxic phenotype that contributes to motor neuron (MN) degeneration.MethodsWe used human induced astrocytes (iAstrocytes) from 3 ALS patients carrying C9orf72 mutations and 3 non-affected donors to investigate the role of astrocyte-derived EVs (ADEVs) in ALS astrocyte toxicity. ADEVs were isolated from iAstrocyte conditioned medium via ultracentrifugation and resuspended in fresh astrocyte medium before testing ADEV impact on HB9-GFP+ mouse motor neurons (Hb9-GFP+ MN). We used post-mortem brain and spinal cord tissue from 3 sporadic ALS and 3 non-ALS cases for PCR analysis.FindingsWe report that EV formation and miRNA cargo are dysregulated in C9ORF72-ALS iAstrocytes and this affects neurite network maintenance and MN survival in vitro. In particular, we have identified downregulation of miR-494-3p, a negative regulator of semaphorin 3A (SEMA3A) and other targets involved in axonal maintenance. We show here that by restoring miR-494-3p levels through expression of an engineered miRNA mimic we can downregulate Sema3A levels in MNs and increases MN survival in vitro. Consistently, we also report lower levels of mir-494-3p in cortico-spinal tract tissue isolated from sporadic ALS donors, thus supporting the pathological importance of this pathway in MNs and its therapeutic potential.InterpretationALS ADEVs and their miRNA cargo are involved in MN death in ALS and we have identified miR-494-3p as a potential therapeutic target.Funding: Thierry Latran Fondation and Academy of Medical Sciences.
The epithelial–mesenchymal transition (EMT) is important for embryonic development and the formation of various tissues or organs. However, EMT dysfunction in normal cells leads to diseases, such as cancer or fibrosis. During the EMT, epithelial cells are converted into more invasive and active mesenchymal cells. E-box-binding proteins, including Snail, ZEB and helix–loop–helix family members, serve as EMT-activating transcription factors. These transcription factors repress the expression of epithelial markers, for example, E-cadherin, rearrange the cytoskeleton and promote the expression of mesenchymal markers, such as vimentin, fibronectin and other EMT-activating transcription factors. Signaling pathways that induce EMT, including transforming growth factor-β, Wnt/glycogen synthase kinase-3β, Notch and receptor tyrosine kinase signaling pathways, interact with each other for the regulation of this process. Although the mechanism(s) underlying EMT in cancer or embryonic development have been identified, the mechanism(s) in embryonic stem cells (ESCs) remain unclear. In this review, we describe the underlying mechanisms of important EMT factors, indicating a precise role for EMT in ESCs, and characterize the relationship between EMT and ESCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.