A new chemical sensor based on reverse-biased graphene/Si heterojunction diode has been developed that exhibits extremely high bias-dependent molecular detection sensitivity and low operating power. The device takes advantage of graphene's atomically thin nature, which enables molecular adsorption on its surface to directly alter graphene/Si interface barrier height, thus affecting the junction current exponentially when operated in reverse bias and resulting in ultrahigh sensitivity. By operating the device in reverse bias, the work function of graphene, and hence the barrier height at the graphene/Si heterointerface, can be controlled by the bias magnitude, leading to a wide tunability of the molecular detection sensitivity. Such sensitivity control is also possible by carefully selecting the graphene/Si heterojunction Schottky barrier height. Compared to a conventional graphene amperometric sensor fabricated on the same chip, the proposed sensor demonstrated 13 times higher sensitivity for NO₂ and 3 times higher for NH₃ in ambient conditions, while consuming ∼500 times less power for same magnitude of applied voltage bias. The sensing mechanism based on heterojunction Schottky barrier height change has been confirmed using capacitance-voltage measurements.
A reverse bias tunable Pd- and Pt-functionalized graphene/Si heterostructure Schottky diode H2 sensor has been demonstrated. Compared to the graphene chemiresistor sensor, the chemi-diode sensor offers more than one order of magnitude higher sensitivity as the molecular adsorption induced Schottky barrier height change causes the heterojunction current to vary exponentially in reverse bias. The reverse bias operation also enables low power consumption, as well as modulation of the atomically thin graphene's Fermi level, leading to tunable sensitivity and detection of H₂ down to the sub-ppm range.
Low temperature pulsed laser deposited (PLD) ultrathin boron nitride (BN) on SiO2 was investigated as a dielectric for graphene electronics, and a significant enhancement in electrical transport properties of graphene/PLD BN compared to graphene/SiO2 has been observed. Graphene synthesized by chemical vapor deposition and transferred on PLD deposited and annealed BN exhibited up to three times higher field effect mobility compared to graphene on the SiO2 substrate. Graphene field effect transistor devices fabricated on 5 nm BN/SiO2 (300 nm) yielded maximum hole and electron mobility of 4980 and 4200 cm2/V s, respectively. In addition, significant improvement in carrier homogeneity and reduction in extrinsic doping in graphene on BN has been observed. An average Dirac point of 3.5 V and residual carrier concentration of 7.65 × 1011 cm−2 was observed for graphene transferred on 5 nm BN at ambient condition. The overall performance improvement on PLD BN can be attributed to dielectric screening of charged impurities, similar crystal structure and phonon modes, and reduced substrate induced doping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.