Nowadays, there is a growing trend in smart cities. Therefore, the Internet of Things (IoT) enabled Underwater and Wireless Sensor Networks (I-UWSN) are mostly used for monitoring and exploring the environment with the help of smart technology, such as smart cities. The acoustic medium is used in underwater communication and radio frequency is mostly used for wireless sensor networks to make communication more reliable. Therefore, some challenging tasks still exist in I-UWSN, i.e., selection of multiple nodes’ reliable paths towards the sink nodes; and efficient topology of the network. In this research, the novel routing protocol, namely Time Based Reliable Link (TBRL), for dynamic topology is proposed to support smart city. TBRL works in three phases. In the first phase, it discovers the topology of each node in network area using a topology discovery algorithm. In the second phase, the reliability of each established link has been determined while using two nodes reliable model for a smart environment. This reliability model reduces the chances of horizontal and higher depth level communication between nodes and selects next reliable forwarders. In the third phase, all paths are examined and the most reliable path is selected to send data packets. TBRL is simulated with the help of a network simulator tool (NS-2 AquaSim). The TBRL is compared with other well known routing protocols, i.e., Depth Based Routing (DBR) and Reliable Energy-efficient Routing Protocol (R-ERP2R), to check the performance in terms of end to end delay, packet delivery ratio, and energy consumption of a network. Furthermore, the reliability of TBRL is compared with 2H-ACK and 3H-RM. The simulation results proved that TBRL performs approximately 15% better as compared to DBR and 10% better as compared to R-ERP2R in terms of aforementioned performance metrics.
Summary
In this study, Burr‐XII and Rayleigh distributions are combined to form a new mixture model that is considered to model heterogeneous data. Our objective is to estimate parameters of the proposed mixture model using Bayesian technique under type‐I censoring. Bayesian parameter estimation for the said mixture model is conducted by using informative priors, ie, gamma and squared root inverted gamma (SRIG) as well as noninformative prior, ie, Jeffrey's prior. Squared error loss function (SELF) and quadratic loss function (QLF) are employed to obtain and Bayes estimators. Properties of the proposed Bayes estimators are highlighted through a simulation study. When prior distributions and loss functions utilized in the study are compared in terms of posterior risks, informative prior found to be more suitable and decision turns out to be in favor of QLF. Prediction limits for the single sample case and two sample case are obtained to provide an insight into future sample data. Application of the proposed model is also elaborated using a real‐life example.
Cloud Computing (CC) is a promising technology due to its pervasive features, such as online storage, high scalability, and seamless accessibility, in that it plays an important role in reduction of the capital cost and workforce, which attracts organizations to conduct their businesses and financial activities over the cloud. Even though CC is a great innovation in the aspect of computing with ease of access, it also has some drawbacks. With the increase of cloud usage, security issues are proportional to the increase. To address these, there has been much work done in this domain, whereas research work considering the growing constrained applications provided by the Internet of Things (IoT) and smart city networks are still lacking. In this survey, we provide a comprehensive security analysis of CC-enabled IoT and present state-of-the-art in the research area. Finally, future research work and possible areas of implementation and consideration are given to discuss open issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.