Spring phytoplankton blooms play a major role in the carbon biogeochemical cycle of the Oyashio region, western subarctic Pacific, where the seasonal biological drawdown effect on seawater pCO2 is one of the greatest among the world's oceans. However, the bloom often terminates before depleting macronutrients, and the initiation and magnitude of the bloom is heterogeneous. We conducted a high resolution taxonomic and physiological assessment of phytoplankton in relation to the different physicochemical water masses of Coastal Oyashio Water (COW), Oyashio water (OYW), and modified Kuroshio water (MKW) in the Oyashio region from April to June 2007. Massive diatom blooms were found in April. Then, chlorophyll a concentration, cell abundance of diatom taxa, and the maximum photosystem II photochemical efficiency (Fv/Fm) were positively correlated with the mixing ratios of COW, suggesting that the spring bloom in April was strongly affected by the intrusion of COW. In the OYW, intensive blooms occurred from the middle of May under low dissolved iron (DFe) concentration (< 0.26 nM). Redundancy analysis showed that while diatom blooms accompanied by COW were related to DFe concentration, this was not the case in the OYW. These results indicated that diatoms in the OYW possess different iron adaptation strategies compared with diatoms in the water masses affected by COW. This led to the spatial heterogeneity of the Oyashio spring bloom. The results presented here demonstrate that water mass characterization with detailed assessments of phytoplankton taxonomy and physiological status can improve our understanding of marine ecosystems.
Abstract. The Sea of Okhotsk is known as one of the most biologically productive regions among the world's oceans, and its productivity is supported in part by the discharge of iron (Fe)-rich water from the Amur River. However, little is known about the effect of riverine-derived Fe input on the physiology of the large diatoms which often flourish in surface waters of the productive continental shelf region. We conducted diatom-specific immunochemical ferredoxin (Fd) and flavodoxin (Fld) assays in order to investigate the spatial variability of Fe nutritional status in the microplankton-sized (20–200 μm; hereafter micro-sized) diatoms. The Fd index, defined as the proportion of Fd to the sum of Fd plus Fld accumulations in the cells, was used to assess their Fe nutritional status. Additionally, active chlorophyll fluorescence measurements using pulse-amplitude-modulated (PAM) fluorometry were carried out to obtain the maximum photochemical quantum efficiency (Fv/Fm) of photosystem II for the total micro-sized phytoplankton assemblages including diatoms. During our observations in the summer of 2006, the micro-sized diatoms were relatively abundant (> 10 μg C L−1) in the neritic region, and formed a massive bloom in Sakhalin Bay near the mouth of the Amur River. Values of the Fd index and Fv/Fm were high (> 0.9 and > 0.65, respectively) near the river mouth, indicating that Fe was sufficient for growth of the diatoms. However, in oceanic waters of the Sea of Okhotsk, the diatom Fd index declined as cellular Fld accumulation increased. These results suggest that there was a distinct gradient in Fe nutritional status in the micro-sized diatoms from near the Amur River mouth to open waters in the Sea of Okhotsk. A significant correlation between dissolved Fe (D-Fe) concentration and the Fd index was found in waters off Sakhalin Island, indicating that D-Fe was a key factor for the photophysiology of this diatom size class. In the vicinity of the Kuril Islands between the Sea of Okhotsk and the Pacific Ocean, micro-sized diatoms only accumulated Fld (i.e., Fd index = 0), despite strong vertical mixing consistent with elevated surface D-Fe levels (> 0.4 nM). Since higher Fe quotas are generally required for diatoms growing under low light conditions, the micro-sized diatoms off the Kuril Islands possibly encountered Fe and light co-limitations. The differential expressions of Fd and Fld in micro-sized diatoms helped us to understand how these organisms respond to Fe availability in the Sea of Okhotsk in connection with the Amur River discharge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.