SummaryThe immune modulating capacity of vitamin D3 is well-recognized. Ultraviolet (UV) exposure determines production of vitamin D3 in vivo and varies through the course of the year, especially in temperate regions. However, it is not known whether the human innate immune response differs due to seasonality. To validate the seasonal effects of vitamin D3, the effect of 1,25(OH)2D3 on peripheral blood mononuclear cells (
Both interferon-gamma-producing type 1 T helper (Th1)- and interleukin-17 (IL-17)-producing Th17 cells have been proposed to be involved in anti-fungal host defence. Although invasive aspergillosis is one of the most severe human fungal infections, little is known regarding the relative importance of the Th1 versus Th17 cellular immune pathways for the human anti-Aspergillus host defence. Using human peripheral blood mononuclear cells and a system consisting of monocyte-derived macrophages with lymphocytes, we found that Aspergillus fumigatus is a weak inducer of human IL-17 but induces a strong Th1 response. These data were validated by the very low IL-17 levels in bronchoalveolar lavage fluid and serum of patients with invasive aspergillosis. Surprisingly, live A. fumigatus reduced IL-17 production induced by mitogenic stimuli. This effect was mediated through the propensity of A. fumigatus to metabolize tryptophan and release kynurenine, which modulates the inflammatory response through inhibition of IL-17 production. In conclusion, A. fumigatus does not stimulate production of IL-17 and human host defence against aspergillosis may not rely on potent Th17 responses.
Gamma-aminobutyric acid (GABA)-releasing interneurons play an important modulatory role in the cortex and have been implicated in multiple neurological disorders. Patient-derived interneurons could provide a foundation for studying the pathogenesis of these diseases as well as for identifying potential therapeutic targets. Here, we identified a set of genetic factors that could robustly induce human pluripotent stem cells (hPSCs) into GABAergic neurons (iGNs) with high efficiency. We demonstrated that the human iGNs express neurochemical markers and exhibit mature electrophysiological properties within 6-8 weeks. Furthermore, in vitro, iGNs could form functional synapses with other iGNs or with human-induced glutamatergic neurons (iENs). Upon transplantation into immunodeficient mice, human iGNs underwent synaptic maturation and integration into host neural circuits. Taken together, our rapid and highly efficient single-step protocol to generate iGNs may be useful to both mechanistic and translational studies of human interneurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.