Designing an adequate controller for a plant with an arbitrary relative degree is still an active area of research. In this paper, a discrete variable structure model reference adaptive control using only input-output measurements (DVS-MRAC-IO) for not strictly positive real systems with a relative degree of two is proposed. In order to show the effectiveness of the proposed controller, a detailed stability analysis is studied using Lyapunov theory. Further, a straightforward generalization of DVS-MRAC-IO for systems with arbitrary relative degree is presented. Numerical results are used to show the effectiveness of the proposed methods.
The robustness issue of uncertain nonlinear systems’ control has attracted the attention of numerous researchers. In this paper, we propose three techniques to deal with the uncertain Hammerstein nonlinear model. First, a discrete sliding mode control (SMC) is developed, which is based on converting the original nonlinear system into a linearized one in the vicinity of the operating region using Taylor series expansion. However, the presence of relatively high nonlinearities and parameter variations leads to the deterioration of the desired performances. In order to overcome these problems and to improve the performance of classical SMC, we propose two solutions. The first one is based on the synthesis of a discrete SMC, taking into account the presence of nonlinearity. The second solution is a new discrete adaptive SMC for input–output Hammerstein model. In order to show the effectiveness of the proposed controllers, a detailed robustness analysis is clearly developed. Simulation examples are reported at the end of the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.