Waterways are popular locations for the disposition of criminal evidence because the recovery of latent fingerprints from such evidence is difficult. Currently, small particle reagent is a method often used to visualize latent fingerprints containing carcinogenic and hazardous compounds. This study proposes an eco-friendly, safranin-tinted Candida rugosa lipase (triacylglycerol ester hydrolysis EC 3.1.1.3) with functionalized carbon nanotubes (CRL-MWCNTS/GA/SAF) as an alternative reagent to the small particle reagent. The CRL-MWCNTS/GA/SAF reagent was compared with the small particle reagent to visualize groomed, full fingerprints deposited on stainless steel knives which were immersed in a natural outdoor pond for 30 days. The quality of visualized fingerprints using the new reagent was similar (modified-Centre for Applied Science and Technology grade: 4; p > 0.05) to small particle reagent, even after 15 days of immersion. Despite the slight decrease in quality of visualized fingerprints using the CRL-MWCNTS/GA/SAF on the last three immersion periods, the fingerprints remained forensically identifiable (modified-Centre for Applied Science and Technology grade: 3). The possible chemical interactions that enabled successful visualization is also discussed. Thus, this novel reagent may provide a relatively greener alternative for the visualization of latent fingerprints on immersed non-porous objects.
Fingerprint has been one of the powerful evidence in forensic investigation as it is useful for human identification, associating an individual to an item and/or location of interest, as well as reconstructing the crime scenes. Considering that latent fingerprints are commonly found at crime scenes and that it requires the use of fingerprint visualization methods due to its hidden nature, continuous research in developing suitable methods has been reported. However, the underlying physical and/or chemical interactions for certain visualization methods that have successfully visualized wet fingerprints remains unreported. This is probably because previous studies were primarily focused on establishing the fingerprint contrast rather than the comprehension of the physical and chemical aspects behind it. A good understanding on such aspects may prove useful in guiding future improvements, or modifications of existing fingerprint visualization methods. Hence, this review paper focuses on wet latent fingerprints, difficulties in the available wet fingerprint visualization methods, as well as its overview of the challenges and future insights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.